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Organophosphate pesticides (OPs) are a group of widely used insecticides in agriculture and vec-
tor control. The primary mechanism of action of OPs is the inhibition of acetylcholinesterase
(AChE), leading to the accumulation of acetylcholine and disruption of neural transmission. As
acetylcholine acts as neurotransmitter in most animal groups, exposure to OPs has raised increas-
ing ecological concerns due to their toxicity to non-target organisms. Among vertebrates, amphibi-
ans are particularly vulnerable to OP exposure given their dual life cycle, which makes them sus-
ceptible to contamination in both water and lands. The impairment of neural transmission by OPs
can result in behavioral impairments such as abnormal swimming and decreased predator avoid-
ance, ultimately reducing individual fitness and survival. Exposure to OPs also poses developmen-
tal risks, causing morphological abnormalities, delayed metamorphosis and reduced growth. Liver
and muscle tissues exhibit histopathological changes, indicating systemic stress, while exposure to
even low concentrations impairs immune function, increasing susceptibility to infection and re-
ducing resistance against environmental stressors. This mini review synthesizes findings from peer
-reviewed studies and reviews published in the last 10 years about the impact of OPs on amphibi-
ans, with special focus on anurans as the most studied group in this context. Despite the thematic
evolution of ecotoxicology towards more ecology-focused studies, the fact that OPs are not emerg-
ing pesticides has somehow excluded them from this pattern. However, OP toxicity to anurans is
still of concern, hence future research should prioritize field-based assessments, long-term studies,
and species-specific sensitivity to better understand the ecological implications of OP exposure.
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Amphibians hold a unique and vital
role in ecosystems and are widely distrib-
uted across the globe, with the highest di-
versity occurring in tropical regions. The
countries with the top amphibian species
richness are Brazil (1188 species) (Segarra
et al., 2021), Colombia (836 species) (Roacn
et al, 2020), and Ecuador (635 species)
(OrTEGA-ANDRADE et al., 2021). These na-
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tions are part of the Neotropics, which har-
bor nearly half of the world’s amphibian
species and are characterized by high lev-
els of endemism (Koo et al., 2013).
Amphibians are crucial for ecosystem
health, functioning as both predators and
prey in food webs. They control pest pop-
ulations by consuming insects, while serv-
ing as a food source for various animals
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(WEsT, 2018). Their role in pest manage-
ment reduces reliance on chemical pesti-
cides, thereby benefiting agriculture, hu-
man health, and energy transfer within
ecosystems (Hocking & Bassirr, 2014;
West, 2018). Certain amphibian species
burrow to escape harsh conditions, aiding
ecosystem health by breaking down organ-
ic matter and enhancing soil fertility. Ad-
ditionally, tadpoles support aquatic nutri-
ent cycling by grazing on algae. Amphibi-
ans serve as nutrient conduits between
terrestrial and aquatic environments, en-
riching soil and water through their nitro-
gen- and phosphorus-rich waste (Hocking
& BassiTt, 2014; WEsT, 2018; ATKINSON et
al., 2021).

Amphibians are considered sentinel
species due to their sensitivity to environ-
mental changes. Their permeable skin
makes them susceptible to pollutants and
habitat destruction. Worldwide, amphibi-
an populations are experiencing alarming
declines, signaling broader ecological in-
stability (BrUHL ef al., 2013; BARRETO et al.,
2020). Factors such as climate change, hab-
itat loss, diseases, invasive species, and
pollution, particularly from pesticides,
threaten their survival. Among the various
pollutants, pesticides are particularly det-
rimental to amphibians, contributing sig-
nificantly to individual mortality and pop-

ulation declines (BrUHL et al, 2013
GOESSENS et al., 2022).
According to a recent report by

LueDpTKE ef al., (2023) the global decline of
amphibians continues to worsen, with
40.7% (2873 species) classified as globally
threatened under IUCN Red List catego-
ries (Critically Endangered, Endangered,
or Vulnerable). Habitat loss and degrada-

tion are the most frequently reported
threats to endangered amphibians, with
agriculture affecting 77% of species, timber
and plant harvesting impacting 53%, and
infrastructure development affecting 40%.
Additionally, climate change and disease
pose significant threats, each affecting 29%
of species (Womack et al., 2022; LUEDTKE et
al., 2023). In that review, pollution appears
as an additional source for habitat loss and
degradation, affecting by itself almost as
many species as climate change (see Figure
2 in LuepTke et al., 2023). The real extent of
pollution as a threat to amphibian popula-
tions is, however, difficult to determine;
for instance, after facing lethal exposure to
pollutants, amphibians
may die away from the poisoning site, de-
compose rapidly, or be consumed by scav-
engers, resulting in only a small fraction of
such fatalities being documented (BeasLEy,
2020).

The extent of pesticide risks to amphib-
ians is not limited to the populations in-
habiting farmland and using in-crop habi-
tats. In fact, pesticides applied on crop
fields are not confined to a limited area,
but they reach off-crop, nearby areas, and
sometimes travel long distances. Short-
distance, off-crop pollution occurs through

environmental

spray drift, and from runoff or erosion
from treated soils (Kaur et al., 2019). Long-
distance travel may happen via atmos-
pheric transport and further deposition in
areas far beyond the point of pesticide ap-
plication, acting those pesticides as trans-
boundary pollutants. Deposition is partic-
ularly relevant in colder areas, and so
mountain populations become particularly
affected. Certain OPs like chlorpyrifos
have been shown to travel long distances
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from their source (Mackay ef al., 2014) and
accumulate in tissues of aquatic organ-
isms, thus increasing the chances of bioac-
cumulation as they move up the food
chain (Sipnu et al., 2019; Hasan et al., 2022).
Like many other organisms, amphibi-
ans are vulnerable to pesticide exposure,
with particular concern over the effects of
OPs. In regions with heavy pesticide use,
amphibians suffer from a range of adverse
effects (GorpiLLO et al., 2024). Acute expo-
sure to pesticides increases mortality,
while sub-lethal exposure can cause long-
term population declines in amphibians
(ORTIZ-SANTALIESTRA ¢t al., 2017). A notable
case is the decline of frog populations in
California’s mountains, attributed to air-
borne OP drift from agriculture in the San
Joaquin Valley (SparrinG et al.,, 2001; Da-
vipsoN, 2004). Such direct links, however,
are uncommon, as amphibian declines of-
ten involve multiple interacting stressors
that obscure the role of individual stress-
ors. This review seeks to synthesize the
available evidence on the effects of OPs on
amphibians,
established toxicological mechanisms and
newer findings that hold relevance for con-
servation and ecological risk assessment.

emphasizing both well-
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ORGANOPHOSPHATE PESTICIDES AS
PART OF THE GLOBAL PESsTICIDE USAGE

The global trend in pesticide usage re-
flects a steady increase over the past few
decades, driven by the need to enhance
agricultural productivity and ensure food
security amidst a growing population and
climate change challenges. The extensive
use of pesticides is largely driven by large-
scale agricultural practices, particularly the
cultivation of high-value cash crops such
as soybeans, corn, and coffee (RAHMAN &
Cuaima, 2018). From 1990 to 2022, the
worldwide agricultural use of pesticides
rose significantly, reaching 3.69 million
metric tons in 2022 (StaTista, 2024a) (Fig.
1). This growth is expected to continue,
with forecasts indicating a slight increase
to around 4.41 million metric tons by 2027
(StaTisTa, 2024b). Developing countries
have witnessed the most significant
growth in pesticide application, mainly
due to agricultural intensification and ex-
pansion of cultivated lands. Herbicides
constitute the largest category of pesticides
applied worldwide, accounting for ap-
proximately 47.5% of the total loads, fol-
lowed by insecticides (29.5%), fungicides
(17.5%), and other pesticide types (5.5%)
(BoNDAREVA & FEDOROVA, 2021).

Figure 1: Global agricultural

pesticide consumption be-
tween 2012 and 2022
(StaTisTa, 2024a).
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OP use varies by region, with the
Americas showing intensive usage, partic-
ularly in the United States, where they oc-
cupy a major share of the insecticide mar-
ket (WisnujaTi, 2023). In southeast Asia,
their use is also significant, driven by rapid
agricultural development in countries like
India and China (Lek et al., 2022). Regula-
tory actions, such as the restriction on
chlorpyrifos use in the United States of the
European Union, have impacted OP mar-
ket growth (BAker et al.,, 2024). There is a
growing shift towards biopesticides and
organic farming as consumers and farmers
seek safer alternatives and major players in
the market are focusing on developing
more sustainable and less toxic formula-
tions to address these concerns (MARRONE,
2019). The global pesticide used by region
from 2018-2022 is shown in Figure 2.

Although herbicides and fungicides
dominate global pesticide use, with com-
pounds like glyphosate and atrazine being
most common (SHARMA ef al., 2020), and
despite many OP active ingredients being
removed from pesticide markets in many
countries, OPs still remain one of the most
extensively used groups of pesticides. OPs

8

Figure 2: Global pesticide
use between 2018 and
2022 in different regions
(FAO, 2024).

became widely used all over the world
from the 1970s and 1908s as an attractive
alternative to the highly persistent organo-
chlorine pesticides, which dominated the
insecticide markets until those decades.
Contrarily to organochlorines, OPs possess
the ability to rapidly degrade under natu-
ral conditions such as sunlight, air, and
soil (DHAs & SrivasTava, 2010). In the last
two decades, neonicotinoids and pyre-
throids have increasingly replaced OPs,
favored for their selectivity towards insect
receptors and comparatively lower toxicity
to vertebrates (Stmon-DEeLso et al., 2015).
However, OPs remain extensively used in
developing countries, particularly in Asia
and Africa, where regulatory controls are
limited and agriculture continues to de-
pend heavily on these compounds (BaLAL1
-Moob et al., 2012; SurRaT™MAN et al., 2015).
In fact, global usage of OPs reached ap-
proximately 3.5 million tons in 2020
(CamacHO-PEREZ ef al.,, 2022), and OPs ac-
count for more than 40% of the global pes-
ticide market (Tes1 et al., 2025).

OPs primarily target acetylcholinester-
ase (AChE), the enzyme responsible for
breaking down the neural transmitter ace-
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tylcholine (ACh) in synapses. By binding
to and phosphorylating a serine residue at
the active site of AChE, OPs prevent ACh
hydrolysis, leading to excessive ACh lev-
els. This causes a hyperstimulation of cho-
linergic receptors that results in the rapid
death of insects, but also in severe effects
in other organisms following acute expo-
sure (ARONIADOU-ANDERJASKA et al., 2023).
OPs are mostly water soluble and dissemi-
nate easily into the environment via disso-
lution, abrasion and volatilization (WANG
et al., 2014). This property makes OPs to be
commonly found in surface and ground-
water due to agro-industrial activities (AL1
et al, 2018) and, despite the abovemen-
tioned low persistence, OPs show some
potential to bioaccumulate in the environ-
ment (ZHANG et al., 2010; AscoLI-MORRETE
et al., 2022).

Acute Toxicity oF ORGANOPHOSPHATES

Acute toxicity refers to the harmful
effects that result from short-term expo-
sure to a substance, leading to adverse
health effects within a relatively short peri-
od, typically defined by hours to a few
days. The most common methods for
measuring acute toxicity include the deter-
mination of median lethal concentrations
(LCs0) or doses (LDso), which refer to the
amount of substance that is lethal to 50%
of a test population over a specific expo-
sure period (CCOHS, 2018).

OPs exhibit acute toxicity in non-target
organisms, including anurans (BERNAL-
GonzALez et al, 2023). Acute toxicity is
affected by dose, exposure route, physical
properties, environmental interactions
with other chemicals, and also by receptor
characteristics including species variations

and individual factors like age and health
status (Srivastav et al., 2017; MIko et al.,
2021; AcqQuaront et al., 2022). MAJUMDER
(2024) indicated that technical grade (94%
purity) chlorpyrifos was less toxic than
one of its commercial formulations, con-
taining 20% chlorpyrifos as emulsifiable
concentrate, to a series of freshwater or-
ganisms including tadpoles of the Asian
common toad (Duttaphrynus melanostictus).
Moreover, there is often a distinct diver-
gence in the effects observed between
acute and chronic exposure, even when
considering the same organism and test
chemical (Srivastav ef al., 2018). The main
acute effects seen in anurans is the dose-
dependent mortality rate (Srivastav et al.,
2017); the acute toxicity (LCso) values of
organophosphate pesticides from recent
studies conducted on amphibians is shown
in Table 1.

Apart from mortality, acute exposure
can have other consequences threatening
survivability. Exposure to OPs during crit-
ical developmental stages can result in
morphological deformities and behavioral
anomalies (BArrETO et al., 2020; SiLva et al.,
2020a; Ramapani et al., 2022). For example,
acute exposure to chlorpyrifos in crab-
eating frog (Fejervarya limnocharis) tadpoles
caused marked behavioral impairments,
including reduced swimming activity, loss
of equilibrium, abnormal posture, de-
creased feeding, and erratic movements,
with severity increasing at higher concen-
trations (Ramapani ef al., 2022). Acute OP
exposure can also cause biochemical disor-
ders like hypocalcemia and hypophos-
phatemia; acute exposure to chlorpyrifos
was shown to decrease serum calcium and
phosphate levels in Indian skipper frogs
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Table 1: Toxicity values, estimated as median lethal concentrations (LCs0) referred to levels in the
exposure media, for several organophosphate pesticides extracted from studies conducted with

anuran amphibians since 2010.

Substance Exg::re Species sI;:;e (;;:/5;) Reference
Chlorpyrifos 24h Euflictis cyanophlyctis Adults 8.252 SrIvasTav ef al. (2017)
Chlorpyrifos 48h Duttaphrynus melanostictus Larvae 1.47 JAYAWARDENA et al. (2011)
Chlorpyrifos 48h Euflictis cyanophlyctis Adults 7.254 Srivastav et al. (2017)
Chlorpyrifos 48h Fejervarya limnocharis Larvae 3.46 Ramapant et al. (2022)
Chlorpyrifos 72h Euflictis cyanophlyctis Adults 6.247 SrIvasTAv ef al. (2017)
Chlorpyrifos 96h Boana pulchella Larvae 0.98 BarreToO et al. (2020)
Chlorpyrifos 96h Duttaphrynus melanostictus ~ Larvae 5.9 Davrp et al. (2018)
Chlorpyrifos 96h Euflictis cyanophlyctis Adults 4.993 Srivastav et al. (2017)
Chlorpyrifos 96h Fejervarya limnocharis Larvae 2.86 RamaDANTI et al. (2022)
Chlorpyrifos 96h Rana dalmatina Larvae 5.174 BErRNABO et al. (2011b)
Chlorpyrifos 96h Rhinella arenarum Larvae 1.46 LieNDRo et al. (2015)
Dimethoate 48h Duttaphrynus melanostictus Larvae 8.89 JAYAWARDENA ef al. (2011)
Dimethoate 504h Rhinella arenarum Embryos 16.38 AcQuaRroNI ef al. (2022)
Dimethoate 504h Rhinella arenarum Larvae 12.82 Acquaront ef al. (2022)

Diazinon 96h Sclerophrys regularis Adults 0.44 LAWRENCE & Istoma (2010)

Malathion 96h Duttaphrynus melanostictus Larvae 7.5 Davip & KARTHEEK (2015)

Malathion 96h Euflictis cyanophlyctis Larvae 3.588 Giri et al. (2012)

Temephos 48h Rhinella arenarum Larvae 16.79 JunNGes et al. (2017)

Temephos 48h Rhinella fernandezae Larvae 4.08 JuNGEs et al. (2017)

Temephos 48h Physalaemus albonotatus Larvae 5.88 JuNGEs et al. (2017)

(Euphlyctis cyanophlyctis) (SRIvasTAvV et al.,
2018). Furthermore, reduced growth rates
in tadpoles following acute exposure to
OPs may limit their ability to reach meta-
morphosis, thus impacting population dy-
namics (SiLva et al., 2020a).

Curonic EFfFecTs OF
ORGANOPHOSPHATE PESTICIDES

Various studies have emphasized the
importance of assessing sub-lethal expo-
sure when characterizing pesticide effects
on amphibians. Davip ef al., (2012) noted

10

that prolonged exposure to environmental-
ly relevant concentrations of OPs could
lead to chronic health issues and altered
behavioral responses, which could further
threaten amphibian populations. Long-
term exposure to OPs can lead to various
sublethal effects in amphibians; for in-
stance, chlorpyrifos has been shown to
significantly affect the locomotor activity
and morphology of amphibians at concen-
trations as low as 4 pg/L in the water me-
dium (Ramapani et al., 2022). The observed
effects are seen to increase in the presence
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of other stressors like temperature and UV
(Quiroga et al., 2019; HEnao MuRNoz et al.,
2020; Henao et al., 2022). These findings
are particularly concerning as they high-
light the sensitivity of amphibians to these
chemicals even at low concentrations,
which may not cause immediate lethality
but can severely impair overall fitness and
population. Below we review some of the
main sublethal effects of OPs reported in
amphibians, with emphasis on those stud-
ies published during the last ten years.

Biochemical and physiological implications

Organophosphate pesticides exert their
toxic effects through well-
characterized neurotoxic, oxidative, geno-
toxic, and endocrine-disrupting mecha-
nisms that can manifest even at sublethal
exposure levels. As already mentioned,
amphibians are particularly vulnerable to
these effects due to their permeable skin
and aquatic larval stages, making them
highly sensitive bioindicators of pesticide
contamination (VENTURINO et al., 2003).
Effects on endocrine system: consistent-
ly with their mechanisms of action, OP
exposure interferes with the neuroendo-
crine system of amphibians primarily
through the inhibition of AChE
(AttapEMO et al., 2015). Inhibition of AChE
causes acetylcholine accumulation, leading
to overstimulation of cholinergic receptors,
disrupted nerve signaling, and impaired
neuromuscular coordination. These dis-
ruptions extend beyond the nervous sys-
tem, influencing hormonal regulation and
physiological homeostasis. AChE is widely
recognized as a sensitive biomarker for
sublethal OP exposure in wildlife
(VENTURINO et al., 2003; SanTos et al., 2015).

primary

In D. melanostictus, exposure to chlorpyri-
fos significantly reduced AChE activity,
resulting in decreased swimming perfor-
mance which is a critical behavior for feed-
ing, predator avoidance, and overall fit-
ness (Davip et al.,, 2018; Rurtkoski et al.,
2020; Ramapant et al., 2022). Chlorpyrifos
also inhibits other esterases, including car-
boxylesterase (CbE) and butyrylcholines-
terase (BChE), broadening its neurotoxic
effects. In South American toad (Rhinella
arenarum) tadpoles, both AChE and CbE
activities were inhibited by chlorpyrifos in
a tissue- and diet-dependent manner, sug-
gesting intestinal detoxification modula-
tion (AttADEMO et al., 2017). Moreover,
mixtures with the herbicides 2,4-D and
glyphosate intensified AChE, BChE, and
CbE inhibition caused by chlorpyrifos
(LajmanovicH et al., 2015).

Oxidative stress and cellular damage:
A major downstream consequence of OP
exposure is oxidative stress, resulting from
both direct enzymatic activity and indirect
interference with cellular metabolism
(VENTURINO et al., 2003). Pesticide metabo-
lism frequently generates reactive oxygen
species (ROS), depleting antioxidant re-
serves and disrupting redox homeostasis.
Studies grass
chensinensis) tadpoles exposed to trichlor-
fon revealed marked oxidative stress, char-
acterized by an activation of the antioxi-
dant defenses as shown by the elevated
activities of superoxide dismutase and cat-
alase across all tested concentrations (Lt ef
al., 2017). Glutathione transferase (GST)
activity slightly increased as a response to
trichlorfon exposure only at later stages,
suggesting a delayed detoxification re-
sponse. On the contrary, malondialdehyde

in Asiatic frog (Rana

11
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levels unexpectedly decreased; this mole-
cule usually occurs as a subproduct of li-
pid peroxidation, one of the main expres-
sions of oxidative stress, which led the au-
thors of that study to hypothesize a pro-
cess of metabolic adaptation. Histological
examination revealed hepatic swelling,
cytoplasmic vacuolation, and nuclear ne-
crosis, confirming hepatocellular damage
(L1 et al., 2017). These oxidative disruptions
can lead not only to lipid peroxidation, but
also to immune suppression and compro-
mised cellular function (Borkovié-MiTi€ et
al., 2016; Szuroczki et al., 2019; AWKERMAN
et al., 2024).

Interactions between OPs and environ-
mental stressors can further intensify or
complicate these effects. ScHAVINSKI et al.
(2022) reported that combined exposure of
yellow-spotted tree frog (Boana curupi) tad-
poles to trichlorfon and ultraviolet (UV)
radiation produced complex oxidative re-
sponses. Individually, UV radiation and
trichlorfon increased lipid peroxidation,
protein carbonylation, and AChE activity
while decreasing GST activity, indicating
oxidative damage and impaired detoxifica-
tion. Interestingly, co-exposure to UV radi-
ation type B (UVB) and trichlorfon re-
duced mortality and DNA damage com-
pared to UVB alone, suggesting antagonis-
tic interactions possibly linked to en-
hanced DNA repair or suppression of
apoptotic signaling (Scuavinskr et al,
2022). Such findings illustrate the intricate
interplay between pesticide exposure and
environmental stressors in natural ecosys-
tems.

Genotoxic effects and DNA damage: OP
-induced oxidative stress often progresses
to genotoxic damage, posing long-term

12

risks to amphibian populations. Trichlor-
fon exposure in R. chensinensis caused sig-
nificant increases in micronucleus (MN)
formation in erythrocytes, with MN fre-
quency and other nuclear abnormalities
(e.g. lobed, notched nuclei) rising in a dose
- and time-dependent manner (Ma et al.,
2019). Similarly, chlorpyrifos exposure at
environmentally relevant concentrations
(0.4-1.0 pg/L) induced a dose-dependent
rise in MN frequency, nuclear buds, and
binucleated cells. The underlying mecha-
nisms involve AChE inhibition and ROS-
mediated DNA damage, reflecting the
compound’s pronounced genotoxic and
cytotoxic potential (SiLva et al, 2020b;
Herex ef al.,, 2021; Ramapani et al., 2022).
The cumulative genetic damage from such
exposures may persist across generations,
reducing population resilience and poten-
tially altering evolutionary trajectories.
This genotoxic dimension underscores the
far-reaching ecological consequences of
even low-level OP contamination in am-
phibian habitats.

Endocrine disruption and thyroid dys-
function: OPs interfere with hormonal reg-
ulation, particularly thyroid hormone sig-
naling, which governs amphibian meta-
morphosis (LEemans ef al., 2019). Amphibi-
an metamorphosis depends critically on
triiodothyronine (T3) and thyroxine (T4),
making these stages highly sensitive to
endocrine disrupting chemicals. WaNG et
al. (2025) demonstrated that chlorpyrifos
exposure in African clawed frog (Xenopus
laevis) tadpoles altered thyroid hormone
homeostasis, accelerating early develop-
ment but delaying later metamorphic stag-
es. High concentrations (18 ug/L) reduced
T3 and T4 levels by 28% and 39.4%, respec-
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tively. Molecular analyses revealed that
chlorpyrifos competes with T3 for binding
to thyroid receptor alpha, acting as a par-
tial agonist that interferes with receptor
activation. Co-exposure with T3 further
reduced receptor activity, confirming di-
rect receptor-level disruption and down-
stream gene expression alterations (WangG
et al., 2025). These hormonal perturbations
culminated in abnormal metamorphic pro-
gression and reduced developmental suc-
cess.

Developmental toxicity: OPs exert pro-
found developmental toxicity at embryon-
ic and larval stages. Early exposure to
chlorpyrifos caused neural and morpho-
logical abnormalities in amphibian embry-
os, including incomplete neural tube clo-
sure, fin shortening, tail curvature, and
edema, with severity increasing over time
as LCso values decreased (SOTOMAYOR et al.,
2012; KHARKONGOR ef al., 2018). At the bio-
chemical level, chlorpyrifos reduced orni-
thine decarboxylase activity and polyam-
ine levels, which are vital molecules for
cell division and tissue growth. The deple-
tion of polyamines disrupted normal
growth and differentiation, leading to de-
velopmental delays and malformations.
These findings suggest that polyamine
metabolism represents an early and sensi-
tive biomarker of chlorpyrifos-induced
developmental toxicity in amphibians
(SotomAYOR et al., 2012).

Morphological, histological and hematological
abnormalities

OPs not only induce neurotoxic and
developmental disturbances but also cause
significant alterations in tissue structure
and blood physiology of amphibians.

These changes, though often sublethal, can
impair vital functions such as respiration,
osmoregulation, and immune defense, ul-
timately reducing survival and fitness. As-
sessing such morphological and hemato-
logical responses provides valuable insight
into the systemic toxicity of OPs and their
long-term consequences for anuran health
and population stability.

Morphological abnormalities: OPs
pose significant developmental hazards to
anuran embryos and larvae, inducing a
range of morphological deformities that
jeopardize tadpole survival and popula-
tion stability. Exposure to chlorpyrifos
during critical developmental stages re-
sulted in severe malformations in Physalae-
mus gracilis, primarily affecting oral and
intestinal structures, with deformity sever-
ity increasing at higher concentrations
(Rutkoskr et al.,, 2020). Similarly, D. mel-
anostictus embryos exposed to chlorpyrifos
exhibited reduced body length and width,
indicating impaired somatic growth
(KHARKONGOR ef al., 2018). Such reductions
in body size have ecological consequences,
as smaller tadpoles experience reduced
swimming efficiency and greater vulnera-
bility to predation, negatively impacting
survival and future reproductive potential
(MoONROE et al., 2015).

The developmental deformities ob-
served in OP-exposed amphibians largely
stem from AChE inhibition, which leads to
excessive acetylcholine accumulation and
continuous muscle contraction, producing
abnormal tail and trunk curvature
(GHODAGERI & PancHARATNA, 2011). Tail
morphology, therefore, serves as a sensi-
tive indicator of OP toxicity, with acephate
exposure causing pronounced tail deform-

13
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ities that impair swimming and feeding
performance. Endocrine interference may
further contribute to delayed limb emer-
gence and prolonged metamorphosis, sug-
gesting disruption of thyroid hormone
signaling pathways essential for growth
and differentiation. Apart from external
malformations, OP exposure alters brain
development, with reduced total brain size
and regional shrinkage of the optic tectum
and telencephalon (McCLELLAND et al.,
2018), disrupting sensory and motor coor-
dination and ultimately compromising
behavioral and ecological fitness.

Gonadal abnormalities: Studies direct-
ly investigating the reproductive effects of
pesticides on amphibians are relatively
scarce, and most of these studies focus on
herbicides (Haves et al., 2006, 2010) and
fungicides (PouLsen et al., 2015; Svartz et
al., 2016). OPs have also been shown to
disrupt amphibian reproductive develop-
ment through endocrine-related mecha-
nisms. In agile frogs (Rana dalmatina),
chronic exposure to low concentrations of
chlorpyrifos (0.025-0.05 mg/L) throughout
larval development did not impair surviv-
al or metamorphic success but caused clear
gonadal abnormalities. Histological anal-
yses revealed the presence of testicular
oocytes in males, indicating intersex devel-
opment and impaired spermatogenesis,
whereas controls exhibited normal gonads
(BErRNABO ef al., 2011a). Although the over-
all sex ratio remained unchanged, the re-
duced proportion of males with histologi-
cally normal testes indicates that chlorpyr-
ifos acts as an endocrine disruptor, com-
promising male reproductive capacity
(BERNABO et al., 2011a). Such subtle but her-
itable impairments highlight the long-
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term, population-level risks of chronic pes-
ticide exposure in natural amphibian habi-
tats. Gonadal abnormalities have now
been observed across a wide range of spe-
cies, including mammals, birds and fish,
highlighting the urgent need for integrated
research on the long-term effects of endo-
crine-disrupting chemicals on biodiversity
(Garcts et al., 2020).

Hematological and histological altera-
tions: In addition to developmental and
reproductive toxicity, OP exposure induc-
es significant hematological alterations
that undermine physiological performance
and competence.  Sublethal
chlorpyrifos exposure in amphibian tad-
poles led to marked reductions in lympho-
cytes, monocytes, and basophils, accompa-
nied by increased neutrophil and eosino-
phil counts (SiLva et al., 2020b). This char-
acteristic pattern of neutrophilia coupled
with lymphopenia represents a general-
ized stress response and immunosuppres-
sion, making affected individuals more
vulnerable to infections and environmen-
tal stressors.

immune

The hematotoxic effects of OPs extend
to erythropoiesis. Exposure to malathion
caused a significant decline in total eryth-
rocyte count and hemoglobin concentra-
tion, resulting in acute hemolytic anemia
in F. limnocharis (Kunpu et al., 2011). Simi-
lar effects were observed in adult D. mel-
anostictus, where reduced hemoglobin lev-
els compromised oxygen transport and
overall aerobic capacity (MAHANANDA &
MonanTy, 2012).

OP exposure induces pronounced his-
topathological damage in tadpoles, affect-
ing multiple organ systems. Liver tissues
in exposed individuals commonly exhibit
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sinusoidal congestion, cytoplasmic vacuo-
lation, nuclear fragmentation, oedema, and
severe degeneration at high concentrations
(BaNDARA ef al., 2012). Gill structures also
deteriorate, showing lamellar distortion,
epithelial thickening, altered vasculariza-
tion, and reduced respiratory efficiency.
Chlorpyrifos further disrupts tail muscula-
ture, causing fiber atrophy, enlarged myo-
tomal spaces, and misaligned muscle bun-
dles. Digestive impairments are equally
significant; OP exposure leads to epider-
mal dissolution, vacuolation, serosal de-
generation, necrosis, and epithelial rup-
ture, ultimately compromising nutrient
absorption and hindering normal develop-
ment (Kunbu et al., 2011).

Behavioral implications

Behavior serves as an ecologically rele-
vant and highly sensitive indicator of pes-
ticide toxicity in amphibians, offering early
warnings of sublethal impacts before se-
physiological damage manifests
(Conn & MacPHAIL, 1996). OP exposure
frequently disrupts locomotion, feeding,
and predator avoidance, thereby reducing
individual fitness and revealing toxicity
even at non-lethal concentrations across
multiple anuran species (JunGes et al,

vere

2017). Such behavioral endpoints provide
critical insight into population-level risks,
as even subtle impairments can compro-
mise survival and reproductive success.
Locomotor and activity alterations:
Chlorpyrifos, one of the most widely stud-
ied OPs, has been shown to affect tadpole
locomotor performance in a concentration-
and duration-dependent manner. In R.
dalmatina tadpoles, chronic exposure to 5
pg/L  chlorpyrifos increased swimming

trajectory length by over 20% compared to
controls, and reduced body mass at meta-
morphosis by about 7%, whereas lower
concentrations (0.5 pg/L) or acute expo-
sure produced no measurable effects on
locomotion, development or survival
(Mix6 et al.,, 2021). These results indicate
that agile frogs exhibit tolerance to envi-
ronmentally realistic chlorpyrifos levels,
but repeated exposure to elevated concen-
trations can alter energy allocation and
activity patterns in ways that heighten pre-
dation risk and reduce long-term fitness.

Predator avoidance and escape re-
sponse: Predator avoidance behavior is an
essential survival mechanism in tadpoles,
and OP exposure has been shown to com-
promise this critical response. In the Ar-
gentine horned frog (Ceratophrys ornata),
OP exposure impaired the detection and
reaction
cues, leading to diminished escape re-
sponses and reduced swimming activity in
the presence of predators (Cosrta et al.,
2021). Consequently, predator capture suc-
cess and prey consumption were signifi-
cantly higher in pesticide-exposed individ-
uals compared to unexposed controls
(Costa et al., 2021; McCLELLAND & WoOD-
LEY, 2022). These findings highlight that
even sublethal OP concentrations can pro-
foundly disrupt antipredator strategies,
increasing vulnerability to predation in
natural habitats.

Abnormal behavioral manifestations:
A range of abnormal behavioral patterns
have been reported following OP expo-
sure, including loss of equilibrium, re-
duced feeding activity, and altered loco-
motion (DeNoEL et al, 2012; DaviD &
Kartaeek, 2015; Curi et al., 2022; Samo-

to predator-derived chemical
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JEDEN et al., 2022; BERNAL-GONZALEZ et al.,
2023). The loss of fright response, normally
characterized by an immediate halt in
movement upon disturbance, is consistent-
ly observed among exposed tadpoles. Oth-
er motor anomalies include circular swim-
ming, staggered movement, and whirling
locomotion (Davip & KartHEEK, 2015).
These behavioral abnormalities are pri-
marily attributed to the neurotoxic mecha-
nism of OPs, inhibition of AChE, which
can disrupt neuromuscular coordination
(PeLTZER et al., 2013; Rutkoski et al., 2020).
The resulting muscle spasms and tail con-
tortions impair effective swimming me-
chanics, further reducing the ability to
evade predators or forage efficiently.
Structural alterations in the brain, as ob-
served by McCLELLAND & WooDLEY (2022),
may underlie some of these behavioral
deficits, linking neuroanatomical damage
with functional impairment.

Bioacoustic disruption as a novel end-
point: An unusual yet highly informative
behavioral endpoint involves the disrup-
tion of underwater acoustic signaling in C.
ornata. Tadpoles of this species naturally
emit acoustic signals during conspecific
interactions, but exposure to chlorpyrifos
significantly altered call structure, reduc-
ing duration and pulse number while in-
creasing dominant frequency, especially
under chronic exposure (SaLcapo Costa et
al., 2018). These bioacoustic alterations ap-
peared at concentrations similar to those
inducing early behavioral impairments,
preceding severe physiological damage or
mortality, thus representing a sensitive
and ecologically meaningful biomarker of
sublethal OP exposure.

Recovery and reversibility of behavior-
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al effects: The reversibility of OP-induced
behavioral changes remains an important
area of investigation in ecotoxicology. In C.
ornata tadpoles, most behavioral impair-
ments caused by 96-hour chlorpyrifos ex-
posure were reversible after 72 hours in
pesticide-free water, with normal swim-
ming activity and prey consumption re-
stored and no delayed mortality or mor-
phological abnormalities detected
(Rimorpr et al., 2023). These findings sug-
gest that many acute behavioral effects
represent transient neurofunctional dis-
ruptions rather than permanent damage.
However, not all endpoints recovered
equally; while locomotor functions re-
turned to normal, acoustic alterations per-
sisted after exposure, suggesting that vocal
behavior is a more sensitive and longer-
lasting indicator of chlorpyrifos toxicity
(Rimorpr1 et al.,, 2023). The findings imply
that OP-induced behavioral disruptions in
amphibians may not always cause perma-
nent damage, but recovery depends on the
type and severity of the affected behavior-
al endpoint.

KNOWLEDGE GAPrs AND NEw PATHS

Despite significant advancements in
understanding the effects of OPs on anu-
ran populations, numerous gaps remain in
the current body of knowledge. Interac-
tions between combinations of OPs can
produce synergistic effects that exacerbate
toxicity. Research indicates that pesticides,
when combined with other stressors, can
exert greater toxicity than individual com-
ponents (Henao et al.,, 2022), highlighting
potential cumulative effects on anurans in
agricultural ecosystems. More studies are
needed to understand the impact of pesti-
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cides on amphibians. Most studies have
focused primarily on chlorpyrifos, while
other OPs such as malathion, parathion,
and diazinon remain comparatively un-
derexplored. Further research on these
compounds is needed to provide a more
comprehensive understanding of OP im-
pacts on amphibians.

Another important gap lies in the field
of histopathology; most studies give lim-
ited attention to histopathological assess-
ments. Expanding research in this area is
essential to better understand tissue-level
alterations caused by pesticide exposure in
amphibians. Genotoxic studies are an
emerging field within toxicology, with
technological advances enabling new ap-
proaches to assess pesticide effects. Fur-
ther research in this field is essential to
enhance our understanding of pesticide-
induced genetic damage and its implica-
tions for environmental and human health.

Endocrine disrupting chemicals pri-
marily disrupt the normal functioning of
hormones by effectively binding to, among
others, estrogen or androgen receptors
(TaBB & BrumBERg, 2006). These substances
can interact with multiple hormone recep-
tors, including estrogen, androgen, and
estrogen-related receptors, acting as ago-
nists or antagonists. They also disrupt hor-
mone synthesis, transport, metabolism,
and elimination, reducing hormone levels.
Anuran amphibians are key indicator spe-
cies for detecting endocrine disrupting
chemicals in aquatic ecosystems (Lutz &
Kroas, 1999). Thyroid hormone-driven
metamorphosis is a primary target for en-
docrine disruption research. Estrogen and
other hormones also influence this process,
making larval tissue changes valuable in-

dicators for assessing endocrine disrupting
effects on amphibian development
(MivaTta & Osg, 2012). Thyroid hormones
and their receptors, thyroid receptors a
and {3, are pivotal in regulating amphibian
metamorphosis, which is a critical phase
involving extensive morphological and
physiological remodeling. Acting as nucle-
ar transcription factors, these receptors
control gene expression for neural differ-
entiation, skeletal restructuring, and tissue
reabsorption. Thyroid hormone-mediated
signaling ensures precise temporal coordi-
nation of these transformations. Although
OPs are well known for neurotoxicity via
AChE inhibition, their endocrine disrupt-
ing effects on thyroid receptor pathways
remain poorly explored, with emerging
evidence indicating potential interference
in thyroid receptor-mediated transcription
during anuran development.

An important yet understudied aspect
of OP toxicity in amphibians is the poten-
tial for recovery or reversibility following
exposure. Understanding post-exposure
recovery provides valuable insight into the
resilience of anuran species and helps es-
tablish ecologically relevant pesticide
thresholds for safe agricultural use. As
mentioned above, in C. ornata tadpoles,
most behavioral impairments from a 96-
hour chlorpyrifos exposure were reversed
after 72 hours in pesticide-free water
(Rimorpr et al., 2023). Similarly, B. pulchella
tadpoles showed partial recovery after
removal from contaminated environments,
though certain genotoxic and cellular alter-
ations persisted (PERez-IGLESIAS et al.,
2018). Such studies underscore the need to
integrate recovery assessments into toxici-
ty evaluations to refine pesticide regula-
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tion and environmental risk management.

With this review, we stress the im-
portance of extensive research to under-
stand the implications of OP exposure and
to establish evidence-based conservation
measures to protect anurans from these
substances, especially in those regions
where their use is still widespread. Future
research projects could address these criti-
cal gaps in our knowledge of the impact of
OPs on anuran populations and their
broader ecological consequences.

CONCLUSION

Amphibians are undergoing an unprec-
edented global decline, with more than
43% of species encountering a population
decrease. This concerning tendency ren-
ders their conservation an immediate pri-
ority. Amphibians are essential for sustain-
ing ecological equilibrium by managing
insect populations, promoting nutrient
cycling, and regulating water quality.
Their loss would have cascading effects on
ecosystems, directly affecting both preda-
tors and prey reliant on them. This change
would destabilize food webs and under-
mine critical ecological services, including
the regulation of disease-carrying insects.

Chemical pesticides represent a signifi-
cant threat to amphibians, causing sub-
stantial sublethal effects, especially during
crucial developmental phases. Numerous
anuran species exhibit significant vulnera-
bility to pesticide exposure, particularly
during their breeding seasons, which align
with periods of heightened pesticide appli-
cation. Contaminated food and water sup-
plies aggravate these hazards, impacting
both adult individuals and their larvae.
Exposure during larval stages can dimin-
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ish hatching success, decrease survival
rates, and elevate the probability of abnor-
malities. Moreover, pesticide toxicity mod-
ifies eating behavior, inhibits the immune
system, and heightens predation risk, all of
which can lead to population decreases.
Since behavior integrates various physio-
logical systems, it serves as a sensitive in-
dicator of pesticide toxicity.

Addressing these risks needs appropri-
ate pesticide management systems. Edu-
cating farmers on appropriate pesticide
usage and promoting alternatives such as
biopesticides and natural product-based
treatments are essential measures. A full
examination of pesticide hazards and ben-
efits is crucial for environmental protec-
tion. Integrated Pest Management (IPM)
offers a sustainable method by combining
targeted, low-toxicity pesticides with alter-
native strategies to reduce harm to am-
phibians and biodiversity in general. By
adopting IPM, farmers, foresters, and oth-
er stakeholders can limit the harmful
effects of pesticides while preserving agri-
cultural output, creating a balance be-
tween pest control and ecosystem health.

In addition to enhanced pesticide man-
agement, tougher regulation and enforce-
ment are necessary to defend both envi-
ronmental and public health, especially in
developing countries. Given the broad dis-
semination of pesticides, thorough hazard-
ous monitoring should be conducted, par-
ticularly in protected regions and biodiver-
sity hotspots. Compliance with national
and international pesticide standards must
be strictly enforced, with active engage-
ment from users to assure conformity and
limit ecological harm.
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