The Mesoamerican giant toad (<em>Rhinella horribilis</em>) as bioindicator of vegetation degradation in a tropical forest

Authors

  • Carmen Duque-Amado phD student in MNCN
  • Rodrigo Megía-Palma 2 Universidad de Alcalá (UAH), Parasitology Unit, Department of Biomedicine and Biotechnology, School of Pharmacy.

DOI:

https://doi.org/10.11160/bah.273

Keywords:

amphibian parasites, conservation, ecosystem degradation, ticks, tropical forests

Abstract

Identifying species that can serve as bioindicators of environmental quality is essential for monitoring the anthropogenic impact. Common and widespread species can be ideal bioindicators due to their abundance and easy monitoring, but a confirmation of their differential responses as a function of habitat perturbation is needed. Because amphibians are known as good bioindicators of environmental perturbation, we conducted this work to identify whether a common, generalist amphibian species, the Mesoamerican giant toad (Rhinella horribilis), could serve as a bioindicator of environmental degradation in a tropical forest. We sampled toads in two areas of tropical forest that differed in anthropogenic degradation (primary vs. secondary forest), establishing in each of these areas two sections of the same surface area but differing in substrate (grass vs. sand). We analyzed toad abundance, sex ratio, body length and condition, and the amount and distribution across the body of ectoparasites (ticks). We analyzed 59 toads that were infested with 503 ticks. Based on a multi-model inference approach, the results suggested that toads were more abundant and had lower body condition in the secondary than in the primary forest. In the secondary forest, females were proportionally less abundant than males. The tick loads responded to an interaction of the body area with either the forest type or the substrate, with increased occurrence of ticks in toads from secondary forests and from grass sections. The differences found between the primary and secondary forests in sex ratio, toad abundance, body condition, and tick load across body regions are consistent with previous studies in other less common species of amphibians and thus posit R. horribilis as a good bioindicator of anthropic disturbance in this tropical forest.

References

Akpa, O.M. & Unuabonah, E.I. (2011). Small-sample corrected Akaike information criterion: an appropriate statistical tool for ranking of adsorption isotherm models. Desalination 272: 20-26. DOI: https://doi.org/10.1016/j.desal.2010.12.057

Álvarez-Grzybowska, E.; Urbina-Cardona, N.; Córdova-Tapia, F. & García. A. (2020). Amphibian communities in two contrasting ecosystems: functional diversity and environmental filters. Biodiversity and Conservation 29: 2457-2485. DOI: https://doi.org/10.1007/s10531-020-01984-w

Arantes, Í.D.C.; Vasconcellos, M.M.; Boas, T.C.; Veludo, L.B.A. & Colli, R.G. (2015). Sexual dimorphism, growth, and longevity of two toad species (Anura, Bufonidae) in a neotropical savanna. Copeia 103: 329-342. DOI: https://doi.org/10.1643/CH-14-092

Arnold, E.N. (1986). Mite pockets of lizards, a possible means of reducing damage by ectoparasites. Biological Journal of the Linnean Society 29: 1-21. DOI: https://doi.org/10.1111/j.1095-8312.1986.tb01767.x

Arntzen, J.W. (1999). Sexual selection and male mate choice in the common toad, Bufo bufo. Ethology, Ecology and Evolution 11: 407-414. DOI: https://doi.org/10.1080/08927014.1999.9522823

Barton, K. (2018). MuMIn: Multi-Model Inference. R package version 1.40.4. R Foundation for Statistical Computing, Vienna, Austria. Available at https://CRAN.R-project.org/package=MuMIn. Retrieved on 01 March 2021.

Bermúdez, S.; Apanaskevich, D. & Domínguez A., L.G. (2018). Garrapatas Ixodidae de Panamá. SENACYT, Panama City, Panama.

Bionda, C.D.L.; Babini, S.; Martino, A.L.; Salas, N.E. & Lajmanovich, R.C. (2018). Impact assessment of agriculture and livestock over age, longevity, and growth of populations of common toad Rhinella arenarum (Anura: Bufonidae), central area of Argentina. Global Ecology and Conservation 14: e00398. DOI: https://doi.org/10.1016/j.gecco.2018.e00398

Bosch, J.; Martínez-Solano, I. & García-París, M. (2000). Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biological Conservation 97: 331-337. DOI: https://doi.org/10.1016/S0006-3207(00)00132-4

Bowcock, H.; Brown, G.P. & Shine, R. (2008). Sexual communication in cane toads, Chaunus marinus: what cues influence the duration of amplexus? Animal Behaviour 75: 1571-1579. DOI: https://doi.org/10.1016/j.anbehav.2007.10.011

Bower, D.S.; Brannelly, L.A.; McDonald, C.A.; Webb, R.J.; Greenspan, S.E.; Vickers, M.; Gardner, M.G. & Greenlees, M.J. (2019). A review of the role of parasites in the ecology of reptiles and amphibians. Austral Ecology 44: 433-448. DOI: https://doi.org/10.1111/aec.12695

Burgon, J.D.; Handcock, E.G. & Downie, J.R. (2012). An investigation into the Amblyomma tick (Acari: Ixodidae) infections of the cane toad (Rhinella marina) at four sites in northern Trinidad. Journal of the Trinidad and Tobago Field Naturalists’ Club 2012: 60-66.

Burnham, K.P. & Anderson, D.R. (2004). Multimodel inference, understanding AIC and BIC in model selection. Sociological Methods and Research 33: 261-304. DOI: https://doi.org/10.1177/0049124104268644

Carey, C. (2005). How physiological methods and concepts can be useful in conservation biology. Integrative and Comparative Biology 45: 4-11. DOI: https://doi.org/10.1093/icb/45.1.4

Cayuela, H.; Quay, L.; Dumet, A.; Léna, J.P.; Miaud, C. & Rivière, V. (2017). Intensive vehicle traffic impacts morphology and endocrine stress response in a threatened amphibian. Oryx 51: 182-188. DOI: https://doi.org/10.1017/S0030605315000812

Daam, M.A.; Ilha, P. & Schiesari, L. (2020). Acute toxicity of inorganic nitrogen (ammonium, nitrate and nitrite) to tadpoles of five tropical amphibian species. Ecotoxicology 29: 1516-1521. DOI: https://doi.org/10.1007/s10646-020-02247-8

Davic, R.D. (2003). Linking keystone species and functional groups: A new operational definition of the keystone species concept. Ecology and Society 7: r11. DOI: https://doi.org/10.5751/ES-00502-0701r11

DeVore, J.L.; Shine, R. & Ducatez. S. (2021). Spatial ecology of cane toads (Rhinella marina) in their native range: a radiotelemetric study from French Guiana. Scientific Reports 11: 11817. DOI: https://doi.org/10.1038/s41598-021-91262-8

Dunlap, K.D. & Mathies, T. (1993). Effects of nymphal ticks and their interaction with malaria on the physiology of male fence lizards. Copeia 1993: 1045-1048. DOI: https://doi.org/10.2307/1447082

Dunn, L.H. (1918). Studies on the Iguana Tick, Amblyomma dissimile, in Panama. Journal of Parasitology 5: 1-10. DOI: https://doi.org/10.2307/3271172

EROS (2019). Earth Explorer (16/05/2019-25/05/2019) Area of Interest: Central America and the Caribbean Sea. United States Geological Survey, Earth Resource Observation and Science Center, Sioux Falls, South Dakota, USA. Available at https://earthexplorer.usgs.gov/. Retrieved on 01 March 2021.

Esteban, M.; García-París, M.; Buckley, D. & Castanet, J. (1999). Bone growth and age in Rana saharica, a water frog living in a desert environment. Annales Zoologici Fennici 36: 53-62.

Estrada-Peña, A. (2001). Distribution, abundance, and habitat preferences of Ixodes ricinus (Acari: Ixodidae) in northern Spain. Journal of Medical Entomology 38: 361-370. DOI: https://doi.org/10.1603/0022-2585-38.3.361

Estrada-Peña, A. & Venzal, J.M. (2006). Changes in habitat suitability for the tick Ixodes ricinus (Acari: Ixodidae) in Europe (1900-1999). Ecohealth 3: 154-162. DOI: https://doi.org/10.1007/s10393-006-0036-6

Geue, D. & Partecke, J. (2008). Reduced parasite infestation in urban Eurasian blackbirds (Turdus merula): a factor favoring urbanization. Canadian Journal of Zoology 86: 1419-1425. DOI: https://doi.org/10.1139/Z08-129

Gibson, L.; Lee, T.M.; Koh, L.P.; Brook, B.W.; Gardner, T.A.; Barlow, J.; Peres, C.A.; Bradshaw, C.J.A.; Laurance, W.F.; Lovejoy, T.E. & Sodhi, N.S. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478: 378-381. DOI: https://doi.org/10.1038/nature10425

González-Bernal, E.; Greenlees, M.J.; Brown, G.P. & Shine, R. (2016). Toads in the backyard: why do invasive cane toads (Rhinella marina) prefer buildings to bushland? Population Ecology 58: 293-302. DOI: https://doi.org/10.1007/s10144-016-0539-0

Hayes, D.J. & Sader, S.A. (2001). Comparison of change-detection techniques for monitoring tropical forest clearing and vegetation regrowth in a time series. Photogrammetric Engineering and Remote Sensing 67: 1067-1075.

Hegyi, G. & Garamszegi, L.Z. (2011). Using information theory as a substitute for stepwise regression in ecology and behaviour. Behavioral Ecology and Sociobiology 65: 69-76. DOI: https://doi.org/10.1007/s00265-010-1036-7

Hernández-Ordóñez, O.; Santos, B.A.; Pyron, R.A.; Arroyo‐Rodríguez, V.; Urbina‐Cardona, J.N.; Martínez‐Ramos, M.; Parra‐Olea, G. & Reynoso, V.H. (2019). Species sorting and mass effect along forest succession: Evidence from taxonomic, functional, and phylogenetic diversity of amphibian communities. Ecology and Evolution 9: 5206-5218. DOI: https://doi.org/10.1002/ece3.5110

Hudson, C.M.; Vidal-García, M.; Murray, T.G. & Shine, R. (2020). The accelerating anuran: evolution of locomotor performance in cane toads (Rhinella marina, Bufonidae) at an invasion front. Proceedings of the Royal Society B 287: 20201964. DOI: https://doi.org/10.1098/rspb.2020.1964

Husté, A.; Clobert, J. & Miaud, C. (2006). The movements and breeding site fidelity of the natterjack toad (Bufo calamita) in an urban park near Paris (France) with management recommendations. Amphibia-Reptilia 27: 561-568. DOI: https://doi.org/10.1163/156853806778877130

Iglesias-Carrasco, M.; Martín, J. & Cabido, C. (2017). Urban habitats can affect body size and body condition but not immune response in amphibians. Urban Ecosystems 20: 1331-1338. DOI: https://doi.org/10.1007/s11252-017-0685-y

Janin, A.; Léna, J.P. & Joly, P. (2011). Beyond occurrence: Body condition and stress hormone as integrative indicators of habitat availability and fragmentation in the common toad. Biological Conservation 144: 1008-1016. DOI: https://doi.org/10.1016/j.biocon.2010.12.009

Karraker, N.E. & Welsh, H.H. (2006). Long-term impacts of even-aged timber management on abundance and body condition of terrestrial amphibians in Northwestern California. Biological Conservation 131: 132-140. DOI: https://doi.org/10.1016/j.biocon.2006.02.013

Karraker, N.E.; Fischer, S.; Aowphol, A.; Sheridan, J. & Poo, S. (2018) Signals of forest degradation in the demography of common Asian amphibians. PeerJ 2018: 1-18. DOI: https://doi.org/10.7717/peerj.4220

Kim, Y.; Huete, A.R.; Jiang, Z. & Miura, T. (2007). Multisensory reflectance and vegetation index comparisons of Amazon tropical forest phenology with hyperspectral Hyperion data. In W. Gao & S.L. Ustin (eds.) Remote Sensing and Modeling of Ecosystems for Sustainability IV. SPIE, San Diego, California, USA, nr. 6679 06. DOI: https://doi.org/10.1117/12.734974

Klaus, J.M. & Noss, R.F. (2016). Specialist and generalist amphibians respond to wetland restoration treatments. Journal of Wildlife Management 80: 1106-1119. DOI: https://doi.org/10.1002/jwmg.21091

Lara-Tufiño, J.D.; Badillo-Saldaña, L.M.; Hernández-Austria, R. & Ramírez-Bautista, A. (2019). Effects of traditional agroecosystems and grazing areas on amphibian diversity in a region of central Mexico. PeerJ 7: e6390. DOI: https://doi.org/10.7717/peerj.6390

Lampo, M. & Bayliss, P. (1996). The impact of ticks on Bufo marinus from native habitats. Parasitology 113: 199-206. DOI: https://doi.org/10.1017/S0031182000066440

Lazić, M.M.; Carretero, M.A.; Živković, U. & Crnobrnja-Isailović, J. (2017). City life has fitness costs: Reduced body condition and increased parasite load in urban common wall lizards, Podarcis muralis. Salamandra 53: 10-17.

Lips, K.R.; Burrowes, P.A.; Mendelson, J.R. & Parra-Olea, G. (2005). Amphibian population declines in Latin America: A synthesis. Biotropica 37: 222-226. DOI: https://doi.org/10.1111/j.1744-7429.2005.00029.x

Lucas, L.D. & French, S.S. (2012). Stress-induced trade-offs in a free-living lizard across a variable landscape: consequences for individuals and populations. PLoS One 7: e49895. DOI: https://doi.org/10.1371/journal.pone.0049895

Maragno, F.P. & Souza, F.L. (2011). Diet of Rhinella scitula (Anura, Bufonidae) in the Cerrado, Brazil: The importance of seasons and body size. Revista Mexicana de Biodiversidad 82: 879-886. DOI: https://doi.org/10.22201/ib.20078706e.2011.3.693

Marcogliese, D.J. (2005). Parasites of the superorganism: Are they indicators of ecosystem health? International Journal of Parasitology 35: 705-716. DOI: https://doi.org/10.1016/j.ijpara.2005.01.015

McKenzie, V.J. (2007). Human land use and patterns of parasitism in tropical amphibian hosts. Biological Conservation 137: 102-116. DOI: https://doi.org/10.1016/j.biocon.2007.01.019

Megía-Palma, R.; Martínez, J. & Merino, S. (2018). Manipulation of parasite load induces significant changes in the structural-based throat colour of male Iberian green lizards. Current Zoology 64: 293-302. DOI: https://doi.org/10.1093/cz/zox036

Megía-Palma, R.; Arregui, L.; Pozo, I.; Žagar, A.; Serén, N.; Carretero, M.A. & Merino, S. (2020). Geographic patterns of stress in insular lizards reveal anthropogenic and climatic signatures. Science of the Total Environment 749: 141655. DOI: https://doi.org/10.1016/j.scitotenv.2020.141655

Megía‐Palma, R.; Redondo, L.; Blázquez‐Castro, S. & Barrientos, R. (2023). Differential recovery ability from infections by two blood parasite genera in males of a Mediterranean lacertid lizard after an experimental translocation. Journal of Experimental Zoology A 339: 816-824. DOI: https://doi.org/10.1002/jez.2732

Mendoza-Roldan, J.; Ribeiro, S.R.; Castilho-Onofrio, V.; Grazziotin, F.G.; Rocha, B.; Ferreto-Fiorillo, B.; Pereira, J.S.; Benelli, G.; Otranto, D. & Barros-Battesti, D.M. (2020). Mites and ticks of reptiles and amphibians in Brazil. Acta Tropica 208: 105515. DOI: https://doi.org/10.1016/j.actatropica.2020.105515

Pikacha, P.; Lavery, T. & Leung, L.K.P. (2015). What factors affect the density of cane toads (Rhinella marina) in the Solomon Islands? Pacific Conservation Biology 21: 200-207. DOI: https://doi.org/10.1071/PC14918

R Core Team (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/. Retrieved on 01 March 2021.

Salvador, A.; Veiga, J.P. & Civantos, E. (1999). Do skin pockets of lizards reduce the deleterious effects of ectoparasites? An experimental study with Psammodromus algirus. Herpetologica 55: 1-7.

Sakamoto, Y.; Ishiguro, M. & Kitagawa, G. (1986). Akaike Information Criterion Statistics. Springer, Dordrecht, The Netherlands.

Schnitzer, S.A.; Kuzee, M.E. & Bongers, F. (2005). Disentangling above- and below-ground competition between lianas and trees in a tropical forest. Journal of Ecology 93: 1115-1125. DOI: https://doi.org/10.1111/j.1365-2745.2005.01056.x

Symonds, M.R. & Moussalli, A. (2011). A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology 65: 13-21. DOI: https://doi.org/10.1007/s00265-010-1037-6

Thawley, C.J.; Moniz, H.A.; Merritt, A.J.; Battles, A.C.; Michaelides, S.N. & Kolbe, J.J. (2019). Urbanization affects body size and parasitism but not thermal preferences in Anolis lizards. Journal of Urban Ecology 5: 1-9. DOI: https://doi.org/10.1093/jue/juy031

Zhang, C.; Zhou, T.; Xu, Y.; Du, Z.; Li, B.; Wang, J.; Wang, J. & Zhu, L. (2020). Ecotoxicology of strobilurin fungicides. Science of the Total Environment 742: 140611. DOI: https://doi.org/10.1016/j.scitotenv.2020.140611

Zhou, L.X. & Ding, M.M. (2010). Soil microbial characteristics as bioindicators of soil health. Biodiversity Science 15: 162-171. DOI: https://doi.org/10.1360/biodiv.060290

Downloads

Published

2024-06-12

Issue

Section

Research Papers