Is the Pyrenean newt (<em>Calotriton asper</em>) a thermoconformer? Cloacal and water temperature in two different thermal periods in a Pre-Pyrenean stream population


  • Albert Montori



ectotherms, newts, salamandridae, cloacal temperature, aquatic environment, Calotriton


In ectothermic animals, heat seems to be a determining factor because it influences many vital activities such as locomotion, the ability to escape, feeding, and reproduction, among others. In aquatic environments, physical characteristics of water prevent small ectotherms from thermoregulating and therefore it is expected that their body temperature remains similar to water temperature. Throughout its distribution and annual cycle, the Pyrenean newt (Calotriton asper) is exposed to a wide range of water temperatures that affect its biological and ecological traits like the standard metabolic rate, oxygen consumption, activity period and growth pattern. This study analyses the relationship between the cloacal and water temperatures in a Pre-Pyrenean population of C. asper in two periods with well differentiated water temperatures (July and September). The aims are to establish if there are differences between sexes in cloacal temperature, whether reproductive activity modifies cloacal temperature, and to analyse the degree of thermoconformity of the species. The results indicate that cloacal temperature depends on the water temperature, corroborating the idea that C. asper is mainly a thermoconformer, as it corresponds to an aquatic ectotherm. However, the cloacal temperature of newts was slightly higher than water temperature. In individuals in amplexus, cloacal temperature was significantly higher than in specimens that are not in this mating position, and in July, females showed much greater dispersion in cloacal temperature than males, which is probably related to spawning behaviour.


Angilletta, M.J. (2009). Evolutionary Thermal Biology. Oxford University Press, Oxford, UK.

Angilletta, M.J.; Niewiarowski, P.H. & Navas, C.A. (2002). The evolution of thermal physiology in ectotherms. Journal of Thermal Biology 27: 249-268.

Angilletta, M.J., Jr.; Cooper, B.S.; Schuler, M.S. & Boyles J.G. (2010). The evolution of thermal physiology in endotherms. Frontiers in Bioscience 2: 861-881.

Balogová, M. & Gvoždík, L. (2015). Can newts cope with the heat? Disparate thermoregulatory strategies of two sympatric species in water. PLoS One 10: e0128155.

Brattstrom, B.H. (1963). A preliminary review of the thermal requirements of amphibians. Ecology 44: 238-255.

Brown, R.P. & Au, T. (2009). The influence of metabolic heat production on body temperature of a small lizard, Anolis carolinensis. Comparative Biochemistry and Physiology A 153: 181-184.

Camarasa, S.; Oromi, N.; Sanuy, D. & Amat, F. (2020). Demographic traits variation in a Pyrenean newt (Calotriton asper) among lacustrine and stream populations. Diversity 12: 471.

Clergue-Gazeau, M. (1983). Variations du cycle sexuel des Urodèles pyrénées à tendance aquatique, rôle de la température. II. Les femelles (Euproctus asper Dugès, Triturus helveticus Razoumowsky). Bulletin de la Societé d’Histoire Naturelle de Toulouse 118: 153-159.

Clergue-Gazeau, M. (1987). L’urodèle Euproctus asper (Dugès) dans les Pyrénées-Orientales: repartition géographique et cycle sexuel à basse altitude. Vie milieu 37: 133-138.

Cogălniceanu, D.; Buhaciuc, E.; Tudor, M. & Rosioru, D. (2013). Is reproductive effort environmentally or energetically controlled? The case of the Danube crested newt (Triturus dobrogicus). Zoological Science 30: 924-928.

Dalibard, M.; Laffaille, P.; Sánchez-Pérez, J.; Sauvage, S. & Buisson, L. (2021). Accounting for flow intermittence in freshwater species distribution modelling. Ecohydrology 14: e2346.

Dalibard, M.; Buisson, L.; Besnard, A.; Riberon, A. & Laffaille, P. (2022). Population densities and home range of the vulnerable Pyrenean brook newt in its core aquatic habitat. Amphibia-Reptilia 43: 63-76.

Deluen, M. (2022). Conséquences des Changements Globaux sur les Populations de Calotriton des Pyrénées (Calotriton asper). PhD Dissertation, Université Paul Sabatier, Toulouse, France.

Deluen, M.; Blanchet, S.; Aubret, F.; Trochet, A.; Gangloff, E.J.; Guillaume, O.; Le Chevalier, H.; Calvez, O.; Carle, C.; Genty, L.; Arrondeau, G.; Cazale, L.; Kouyoumdjian, L.; Ribéron, A. & Bertrand, R. (2022). Impacts of temperature on O2 consumption of the Pyrenean brook newt (Calotriton asper) from populations along an elevational gradient. Journal of Thermal Biology 103: 103166.

Despax, R. (1923). Contribution à l’étude anatomique et biologique des Batraciens Urodèles du groupe des Euproctes et spécialement de l’Euprocte des Pyrénées Triton (Euproctus asper, Dugès). Bulletin de la Societé d’Histoire Naturelle de Toulouse 51: 185-440.

Guillaume, O.; Deluen, M.; Raffard, A.; Calvez, O. & Trochet, A. (2020). Reduction in the metabolic levels due to phenotypic plasticity in the Pyrenean newt, Calotriton asper, during cave colonization. Ecology and Evolution 10: 12983-12989.

Harshman, L.G. & Zera, A.J. (2007). The cost of reproduction: the devil in the details. Trends in Ecology & Evolution 22: 80-86.

Hulbert, A.J. & Else, P.L. (2000). Mechanisms underlying the cost of living in animals. Annual Review of Physiology 62: 207–235.

Hutchison, V.H. & Dupré, R.K. (1992). Thermoregulation, In M.E. Feder & W.W. Burggren (eds.) Environmental Physiology of Amphibians. University of Chicago Press, Chicago, USA, pp. 206–249.

Hutchison, V.H.; Dowling, H.G. & Vinegar, A. (1966). Thermoregulation in a brooding female Indian python, Python molorus bivittatus. Science 151: 694–696.

Loras, F. (2019). Seguiment per observació focal d’una població perifèrica de Calotriton asper (Dugès, 1852) a la Garrotxa. Butlletí de la Societat Catalana d’Herpetologia 27: 14-25.

Lucati, F.; Poignet, M.; Miro, A.; Trochet, A.; Aubret, F.; Barthe, L.; Bertrand, R.; Buchaca, T.; Caner, J.; Darnet, E.; Denoël, M.; Guillaume, O.; Le Chevalier; H.; Martinez-Silvestre, A.; Mossoll-Torres, M.; O’Brien, D.; Calvez, O.; Osorio, V.; Pottier, G.; Richard, M.; Sabàs, I.; Souchet, J.; Tomàs, J. & Ventura, M. (2020). Multiple glacial refugia and contemporary dispersal shape the genetic structure of an endemic amphibian from the Pyrenees. Molecular Ecology 29: 2904-2921.

Miaud, C. & Guillaume, O. (2005) Variation in age, body size and growth among surface and cave-dwelling populations of the Pyrenean newt, Euproctus asper (Amphibia; Urodela). Herpetologica 61: 241-249.

Miaud, C. & Merilä, J. (2001). Local adaptation or environmental induction? Causes of population differentiation in alpine amphibians. Biota 2: 31-50.

Montori, A. (1988). Estudio sobre la Biología y Ecología del tritón pirenaico Euproctus asper (Dugès, 1852) en la Cerdanya. PhD Dissertation, Universitat de Barcelona, Barcelona, Spain.

Montori, A. (1990). Skeletochronological results in the Pyrenean newt Euproctus asper (Dugès, 1852) from one prepyrenean population. Annales des Sciences Naturelles Paris 13: 209-211.

Montori, A. & Herrero, P. (2004). Caudata, In M. García-París, A. Montori & P. Herrero (eds.) Amphibia-Lissamphibia. Series: Fauna Ibérica (M.A. Ramos, ed.), vol. 24. Museo Nacional De Ciencias Naturales – CSIC, Madrid, Spain, pp. 43-275.

Montori, A. & Llorente, G.A. (2014). Tritón pirenaico – Calotriton asper, In A. Salvador & Í. Martínez-Solano (eds.) Enciclopedia Virtual de los Vertebrados Españoles. Museo Nacional De Ciencias Naturales – CSIC, Madrid, Spain. Available at Retrieved on 01 August 2023.

Orrell, K.S. & Kunz, T.H. (2016). Energy Costs of Reproduction. Reference Module in Earth Systems and Environmental Sciences,

Piasečná, K.; Pončová, A.; Tejedo, M. & Gvoždík, L. (2015). Thermoregulatory strategies in an aquatic ectotherm from thermally-constrained habitats: An evaluation of current approaches. Journal of Thermal Biology 52: 97-107.

Pottier, G.; Trochet, A.; Dalibard, M.; Laffaille, P.; Guillaume, O.; Baillat, B.; Barbe, F.; Berroneau, M.; Bertrand, R.; Calvez, O.; Campredon, F.; Delmas, C.; Massary, J.C.; de Goudédranche, K.; Lacaze, V.; Lapierre, D.; Le Roux, B.; Martin, M.; Muratet, J.; Rollet, S. & Barthe, L. (2021) Systématique, biologie, écologie, répartition et statut de conservation du Calotriton des Pyrénées Calotriton asper (Dugès, 1852) (Amphibia, Urodela, Salamandridae) en France: vers un Plan National d'Actions. Herp Me! 3: 1-124.

Reedy, A.M.; Edwards, A.; Pendlebury, C.; Murdaugh, L.; Avery, R.; Seidenberg, J.; Aspbury, A.S. & Gabor, C.R. (2014). An acute increase in the stress hormone corticosterone is associated with mating behavior in both male and female red-spotted newts, Notophthalmus viridescens. General and Comparative Endocrinology 208: 57-63.

Serra-Cobo, J.; Uiblein, F. & Martinez-Rica, J.P. (2000). Variation in sexual dimorphism between two populations of the Pyrenean salamander Euproctus asper from ecologically different mountain sites. Belgian Journal of Zoology 130: 39-45.

Trochet, A.; Dupoué, A.; Souchet, J.; Bertrand, R.; Deluen, M.; Murarasu, S.; Calvez, O.; Martinez-Silvestre, A.; Verdaguer-Foz, I.; Darnet, E.; Le Chevalier, H.; Mossoll-Torres, M.; Guillaume, O. & Aubret F. (2018). Variation of preferred body temperatures along an altitudinal gradient: A multi-species study. Journal of Thermal Biology 77: 38-44.

Trochet, A.; Deluen, M.; Bertrand, R.; Calvez, O; Martinez-Silvestre, A.; Verdaguer-Foz, I.; Mossoll-Torres, M.; Souchet, J.; Darnet, E.; Le Chevalier, H.; Guillaume, O. & Aubret F. (2019). Body size increases with elevation in Pyrenean newts (Calotriton asper). Herpetologica 75: 30-37.

Wilson, K. & Hardy, I.C.W. (2002). Statistical analysis of sex ratios: an introduction, In I.C.W. Hardy (ed.) Sex Ratios – Concepts and Research Methods. Cambridge University Press, Cambridge, UK, pp. 48-92.

Žagar, A.; Simčič, T.; Carretero, M.A. & Vrezec, A. (2015). The role of metabolism in understanding the altitudinal segregation pattern of two potentially interacting lizards. Comparative Biochemistry and Physiology A 179: 1-6.






Research Papers