Comparative acute toxicity of pesticides to tadpoles of a tropical anuran (<em>Epipedobates anthonyi</em>), a North American native anuran (<em>Lithobates sphenocephalus</em>) and a standard fish species

Authors

  • Scott Weir Dawson Solutions
  • Lennart Weltje BASF

DOI:

https://doi.org/10.11160/bah.278

Keywords:

poison-arrow frog, plant protection product, amphibians, rainbow trout, southern leopard frog

Abstract

Global amphibian declines have the highest incidence in tropical regions, but most of the ecotoxicological data on amphibians is collected on temperate northern hemisphere anuran species. We tested the hypothesis that tropical anuran larvae (Epipedobates anthonyi) would be more sensitive to pesticides than a North American native species (Lithobates sphenocephalus). For 12 pesticides, 96-hr range-finding acute toxicity tests were conducted to determine if mortality occurred at environmentally relevant levels. Based on those studies, two substances were selected for additional time-to-event analyses in both species as well as median lethal concentration (LC50) calculations. Time-to-event results indicated that the two species appear to be roughly equivalent in their sensitivity to the two tested pesticides. Significant differences between species were not consistent across concentrations for either the insecticide terbufos or the herbicide pendimethalin. The utility of LC50 data was mixed with one LC50 providing an arbitrarily large standard error around the LC50 precluding informative comparisons across species. However, standard LC50 methods allowed data collection that continues to contribute to our understanding of the protectiveness of fish as surrogates for anuran larvae. While our data set is limited, it appears that testing temperate species would be protective for tropical species in ecological risk assessments. Our data also support the continued use of fish as surrogates for amphibian larvae as none of the species were more sensitive to the tested pesticides than rainbow trout (Oncorhynchus mykiss), the standard sensitive fish species used for acute toxicity testing.

References

Araújo, C.V.; Shinn, C.; Moreira-Santos, M.; Lopes, I.; Espíndola, E.L. & Ribeiro, R. (2014). Copper-driven avoidance and mortality in temperate and tropical tadpoles. Aquatic Toxicology 146: 70-75.

Birge, W.J.; Westerman, A.G. & Spromberg, J.A. (2000). Comparative toxicology and risk assessment of amphibians, In D.W. Sparling, G. Linder & C.A. Bishop (eds.) Ecotoxicology of Amphibians and Reptiles, 1st ed. SETAC Press, Pensacola, Florida, USA, pp. 727-791.

Cairns Jr., J. (1986). The myth of the most sensitive species. Bioscience 36: 670-672.

Castillo, L.E.; de la Cruz, E. & Ruepert, C. (1997). Ecotoxicology and pesticides in tropical aquatic ecosystems of Central America. Environmental Toxicology and Chemistry 16: 41-51.

Collins, J.P. & Storfer, A. (2003). Global amphibian declines: sorting the hypotheses. Diversity and Distributions 9: 89-98.

Davidson, C. (2004). Declining downwind: amphibian population declines in California and historical pesticide use. Ecological Applications 14: 1892-1902.

Duellman, W.E. & Trueb, L. (1994). Biology of Amphibians. John Hopkins University Press, Baltimore Maryland, USA.

EFSA (2009) Conclusion on the peer review of the pesticide risk assessment of the active substance haloxyfop-P (haloxyfop-R) on request from the European Commission. EFSA Journal 7: 1348.

Flynn, R.W.; Scott, D.E.; Kuhne, W.; Soteropoulos, D. & Lance, S.L. (2015). Lethal and sublethal measures of chronic copper toxicity in the eastern narrowmouth toad, Gastrophryne carolinensis. Environmental Toxicology and Chemistry 34: 575-582.

Ghose, S.L.; Donnelly, M.A.; Kerby, J. & Whitfield, S.M. (2014). Acute toxicity tests and meta-analysis identify gaps in tropical ecotoxicology for amphibians. Environmental Toxicology and Chemistry 33: 2114-2119.

Glaberman, S.; Kiwiet, J. & Aubee, C.B. (2019). Evaluating the role of fish as surrogates for amphibians in pesticide ecological risk assessment. Chemosphere 235: 952-958.

Gosner, K.L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183-190.

Hay, J.M.; Ruvinsky, I.; Hedges, S.B. & Maxson, L.R. (1995). Phylogenetic relationships of amphibian families inferred from DNA sequences of mitochondrial 12S and 16S ribosomal RNA genes. Molecular Biology and Evolution 12: 928-937.

Houlahan, J.E.; Findlay, C.S.; Schmidt, B.R.; Meyer, A.H. & Kuzmin, S.L. (2004). Quantitative evidence for global amphibian population declines. Nature 404: 752-755.

Jones, D.K.; Hammond, J.I. & Relyea, R.A. (2009). Very highly toxic effects of endosulfan across nine species of tadpoles: Lag effects and family‐level sensitivity. Environmental Toxicology and Chemistry 28: 1939-1945.

Lance, S.L.; Erickson, M.R.; Flynn, R.W.; Mills, G.L.; Tuberville, T.D. & Scott, D.E. (2012). Effects of chronic copper exposure on development and survival in the southern leopard frog (Lithobates [Rana] sphenocephalus). Environmental Toxicology and Chemistry 31: 1587-1594.

Lance, S.L.; Flynn, R.W.; Erickson, M.R. & Scott, D.E. (2013). Within-and among-population level differences in response to chronic copper exposure in southern toads, Anaxyrus terrestris. Environmental Pollution 177: 135-142.

Leudtke, J.A.; Chanson, J.; Neam, K.; Hobin, L.; Maciel, A.O.; Catenazzi, A.; Borzee, A.; Hamidy, A.; Aowphol, A.; Jean, A.; Sosa-Bartuano, A.; Fong G., A.; de Silva, A.; Fouquet, A.; Angulo, A.; Kidov, A.A.; Saravia, A.M.; Diesmos, A.C.; Tominaga, A.; Shrestha, B.; Gratwicke, B.; Tjaturadi, B.; Martinez Rivera, C.C.; Vasquez Almazan, C.R.; Senaris, C.; Chandramouli, S.R.; Cortez Fernandez, C.F.; Azat, C.; Hoskin, C.J.; Hilton-Taylor, C.; Whyte, D.L.; Gower, D.J.; Olson, D.H.; Cisneros-Heredia, D.F.; Santana, D.J.; Nagombi, E.; Najafi-Majd, E.; Quah, E.S.H.; Bolanos, F.; Xie, F.; Brusquetti, F.; Alvarez, F.S.; Andreone, F.; Glaw, F.; Castaneda, F.E.; Kraus, F.; Parra-Olea, G.; Chaves, G.; Medina-Rangel, G.F.; Gonzalez-Duran, G.; Ortega-Andrade, H.M.; Machado, I.F.; Das, I.; Dias, I.R.; Urbina-Cardona, J.N.; Crnobrnja-Isailovic, J.; Yang, J-H.; Jianping, J.; Wangyal, J.T.; Rowley, J.J.L.; Measey, J.; Vasudevan, K.; Chan, K.O.; Gururaja, K.V.; Ovaska, K.; Warr, L.C.; Canseco-Marquez, L.; Toledo, L.F.; Diaz, L.M.; Khan, M.M.H.; Meegaskumbura, M.; Acevedo, M.E.; Napoli, M.F.; Ponce, M.A.; Vaira, M.; Lampo, M.; Yanez-Munoz, M.H.; Scherz, M.D.; Rodel, M-O.; Matsui, M.; Fildor, M.; Kusrini, M.D.; Agmed, M.F.; Rais, M.; Kouame, N.G.; Garcia, N.; Gonwouo, N.L.; Burrowes, P.A.; Imbun, P.Y.; Wagner, P.; Kok, P.J.R.; Joglar, R.L.; Auguste, R.J.; Brandao, R.A.; Ibanez, R.; von May, R.; Hedges, S.B.; Biju, S.D.; Ganesh, S.R.; Wren, S.; Das, S.; Flechas, S.V.; Ashpole, S.L.; Robleto-Hernandez, S.; Loader, S.P.; Inchaustegui S.J.; Garg, S.; Phimmachak, S.; Richards, S.J.; Slimani, T.; Osborne-Naitatini, T.; Abreu-Jardim, T.P.F.; Condez, T.H.; De Carvalho, T.R.; Cutajar, T.P.; Pierson, T.W.; Nguyen, T.Q.; Kaya, U.; Yuan, Z.; Long, B.; Langhammer, P. & Stuart, S.N. (2023) Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 622: 308-314.

Newman, M.C. & McCloskey, J.T. (1996). Time-to-event analyses of ecotoxicity data. Ecotoxicology 5: 187-196.

Ockleford, C.; Adriaanse, P.; Berny, P.; Brock, T.; Duquesne, S.; Grilli, S.; Hernandez-Jerez, A.F.; Bennekou, S.H.; Klein, M.; Kuhl, T.; Laskowski, R.; Machera, K.; Pelkonen, O.; Pieper, S.; Stemmer, M.; Sundh, I.; Teodorovic, I.; Tiktak, A.; Topping, C.J.; Wolterink, G.; Aldrich, A.; Berg, C.; Ortiz, M.S.; Weir, S.; Streissl, F. & Smith, R.H. (2018). Scientific opinion on the state of the science of pesticide risk assessment for amphibians and reptiles. EFSA Journal 16: e05125.

OECD (2019) Test No. 203: Fish, Acute Toxicity Test. OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, France.

Ortiz-Santaliestra, M.E.; Maia, J.P.; Egea-Serrano, A. & Lopes, I. (2018). Validity of fish, birds and mammals as surrogates for amphibians and reptiles in pesticide toxicity assessment. Ecotoxicology 27: 819-833.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/. Retrieved on 1 December 2017.

Schiesari, L.; Grillitsch, B. & Grillitsch, H. (2007). Biogeographic biases in research and their consequences for linking amphibian declines to pollution. Conservation Biology 21: 465-471.

Sparling, D.W.; Linder, G.; Bishop, C.A. & Krest, S.K. (2010). Recent advancements in amphibian and reptile ecotoxicology, In Sparling D.W., G. Linder, C.A. Bishop & S.K. Krest (eds.) Ecotoxicology of Amphibians and Reptiles, 2nd ed. SETAC Press, Pensacola, Florida, USA, pp. 1-11.

Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.L.; Fischman, D.L. & Waller, R.W. (2004). Status and trends of amphibian declines and extinctions worldwide. Science 306: 1783-1786.

Tarvin, R.D.; Borghese, C.M.; Sachs, W.; Santos, J.C.; Lu, Y.; O’connell, L.A.; Cannatella, D.C.; Harris, R.A. & Zakon, H.H. (2017). Interacting amino acid replacements allow poison frogs to evolve epibatidine resistance. Science 357: 1261-1266.

Therneau, T. & Lumley, T. (2009). Survival: Survival analysis, including penalized likelihood. R package version 2.35–2.4. Available at http://CRAN.R-project.org/package=survival. Retrieved on 13 February 2024.

UN (2017). Annex 9, Guidance on Hazards to the Aquatic Environment. Available at: https://unece.org/DAM/trans/danger/publi/ghs/ghs_rev07/English/12e_annex9.pdf. Retrieved on 08 March 2023.

USEPA (1982). MRID 00037483. Available at https://www3.epa.gov/pesticides/chem_search/cleared_reviews/csr_PC-105001_8-Dec-82_d.pdf. Retrieved on 13 February 2024.

USEPA (2016). Ecological Effects Test Guidelines OCSPP 850.1010: Aquatic Invertebrate Acute Toxicity Test, Freshwater Daphnids. EPA 712-C-16-013. Office of Chemical Safety and Pollution Prevention, United States Environmental Protection Agency, Washington, DC, USA.

USEPA (2017) Preliminary Environmental Fate and Ecological Risk Assessment in Support of the Registration Review of 3-Trifluoro-Methyl-4-Nitro-Phenol (TFM) and Niclosamide. Available at https://www.regulations.gov/document/EPA-HQ-OPP-2013-0137-0016. Retrieved on 13 February 2024.

USEPA (2019). ECOTOX Database. National Health and Environmental Effects Laboratory, Mid-Continent Ecology Division, United States Environmental Protection Agency, Duluth, MN, USA. Available at https://cfpub.epa.gov/ecotox/. Retrieved on 02 December 2019.

Vanzetto, G.V.; Slaviero, J.G.; Sturza, P.F.; Rutkoski, C.F.; Macagnan, N.; Kolcenti, C.; Hartmann, P.A.; Ferreira, C.M. & Hartmann, M.T. (2019). Toxic effects of pyrethroids in tadpoles of Physalaemus gracilis (Anura: Leptodactylidae). Ecotoxicology 28: 1105-1114.

Venables, W.N. & Ripley, B.D. (2002). Modern Applied Statistics with S, 4th ed. Springer, New York, New York, USA.

Weir, S.M.; Yu, S. & Salice, C.J. (2012). Acute toxicity of herbicide formulations and chronic toxicity of technical‐grade trifluralin to larval green frogs (Lithobates clamitans). Environmental Toxicology and Chemistry 31: 2029-2034.

Weltje, L.; Simpson, P.; Gross, M.; Crane, M. & Wheeler, J.R. (2013). Comparative acute and chronic sensitivity of fish and amphibians: a critical review of data. Environmental Toxicology and Chemistry 32: 984-994.

Zhang, P.; Liang, D.; Mao, R.L.; Hillis, D.M.; Wake, D.B. & Cannatella, D.C. (2013). Efficient sequencing of anuran mtDNAs and a mitogenomic exploration of the phylogeny and evolution of frogs. Molecular Biology and Evolution 30: 1899-1915.

Downloads

Published

2024-02-19

Issue

Section

Research Papers