Effects of alpha-cypermethrin and difenoconazole on survival, growth and biomarkers in European green toad tadpoles (<em>Bufotes viridis</em>, Laurenti 1768)
DOI:
https://doi.org/10.11160/bah.285Keywords:
amphibia, Bufonidae, electron transport system, pesticide exposure, toxicologyAbstract
In recent decades, the decline of amphibian populations has become more pronounced and accelerated, with one of the contributing factors being the excessive use of pesticides. Alpha-cypermethrin, an insecticide, and difenoconazole, a fungicide, are widely employed pesticides globally. To gain a comprehensive understanding of the acute impact of these two pesticides on amphibians, we used European green toad (Bufotes viridis) tadpoles as our model organisms. We assessed mortality and mass as apical endpoints, and examined physiological biomarkers including electron transport system (ETS) activity, catalase activity, and carbonyl protein content. Tadpoles were exposed to varying concentrations of the two pesticides for 48 hours (0.2-10 µg/L for alpha-cypermethrin; 10-100 µg/L for difenoconazole). Our results indicate that the exposure of tadpoles to these pesticides significantly affected their physiology. Mortality was observed exclusively in tadpoles treated with difenoconazole (LC50 = 100.832 µg/L), while a decrease in mass occurred in tadpoles exposed to both pesticides. No significant differences across treatments were found for total ETS activity, catalase activity, or the presence of protein carbonyls. In conclusion, our findings suggest that alpha-cypermethrin at environmentally relevant concentrations poses a risk to European green toad tadpoles, while the effects of difenoconazole are become patent at higher concentrations than those recorded in natural aquatic environments.
References
Aebi, H. (1984). Catalase in vitro. Methods in Enzymology 105: 121-126.
Aghasyan, A.; Avci, A.; Tuniyev, B.; Crnobrnja-Isailovic, J.; Lymberakis, P.; Andrén, C.; Cogalniceanu, D.; Wilkinson, J.; Ananjeva, N.B.; Üzüm, N. et al. (2017). Bufotes viridis. The IUCN Red List of Threatened Species 2015. International Union for Nature Conservation and Natural Resources, Gland, Switzerland. Available at http://www.iucnredlist.org/. Retrieved on 31 October 2023.
Agostini, M.G.; Natale, G.S. & Ronco, A.E. (2010). Lethal and sublethal effects of cypermethrin to Hypsiboas pulchellus tadpoles. Ecotoxicology 19: 1545-1550.
Bagnyukova, T.V.; Vasylkiv, O.Y.; Storey, K.B. & Lushchak, V.I. (2005). Catalase inhibition by amino triazole induces oxidative stress in goldfish brain. Brain Research 1052: 180-186.
Bãncilã, R.I., Lattuada, M. & Sillero, N. (2023). Distribution of amphibians and reptiles in agricultural landscape across Europe. Landscape Ecology 38: 1-14.
Barriga-Vallejo, C.; Aguilera, C.; Cruz, J.; Banda-Leal, J.; Lazcano, D. & Mendoza, R. (2017). Ecotoxicological biomarkers in multiple tissues of the neotenic Ambystoma spp. for a non-lethal monitoring of contaminant exposure in wildlife and captive populations. Water, Air and Soil Pollution 228: 415.
Bernabò, I.; Guardia, A.; Macirella, R.; Sesti, S.; Crescente, A. & Brunelli, E. (2016). Effects of long-term exposure to two fungicides, pyrimethanil and tebuconazole, on survival and life history traits of Italian tree frog (Hyla intermedia). Aquatic Toxicology 172: 56-66.
Berrill, M.; Bertram, S.; Wilson, A.; Louis, S.; Brigham, D. & Stromberg, C. (1993). Lethal and sublethal impacts of pyrethroid insecticides on amphibian embryos and tadpoles. Environmental Toxicology and Chemistry 12: 525-539.
Blaustein, A.R. & Wake, D.B. (1990). Declining amphibian populations: a global phenomenon? Trends in Ecology and Evolution 5: 203-204.
Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Milzani, A. & Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta 329: 23-38.
David, M.; Marigoudar, S.R.; Patil, V.K. & Halappa, R. (2012). Behavioral, morphological deformities and biomarkers of oxidative damage as indicators of sublethal cypermethrin intoxication on the tadpoles of D. melanostictus (Schneider, 1799). Pesticide Biochemistry and Physiology 103: 127-134.
Finney, D.J. (1971). Probit Analysis. Cambridge University Press, Cambridge, England.
Fryday, S. & Thompson, H. (2012). Toxicity of pesticides to aquatic and terrestrial life stages of amphibians and occurrence, habitat use and exposure of amphibian species in agricultural environments. EFSA Supporting Publications 2012: EN-343.
Gosner, K.L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183-190.
Greulich, K. & Pflugmacher, S. (2003). Differences in susceptibility of various life stages of amphibians to pesticide exposure. Aquatic Toxicology 65: 329-336.
Gürkan, M.; Serbest, S. & Hayretdağ, S. (2016). Acute toxicity of the synthetic pyrethroid alpha-cypermethrin on the tadpoles of variable green toad, Bufotes variabilis (Amphibia:Anura). Ege Journal of Fisheries and Aquatic Sciences 33: 367-371.
Hayes, T.B.; Falso, P.; Gallipeau, S. & Stice, M. (2010). The cause of global amphibian declines: A developmental endocrinologist’s perspective. Journal of Experimental Biology 213: 921-933.
Health Canada (2021). Difenoconazole and its Associated End-Use Products. Pest Management Regulatory Agency, Ottawa, Ontario, Canada.
Henry, M.; Brenner, F.J.; Jones, A.M; Brockhage, R. & Smeltzer, D.A. (2013). Impact of chemical fertilizer and pesticides on aquatic microcosms. Journal of the Pennsylvania Academy of Science 87: 42-49.
Irazusta, V.; Moreno-Cermeno, A.; Cabiscol, E.; Tamarit, J. & Ros, J. (2011). Proteomic strategies for the analysis of carbonyl groups on proteins. Current Protein and Peptide Science 11: 652-658.
Karakousis, Y. & Kyriakopoulou-Sklavounou, P. (1995). Genetic and morphological differentiation among populations of the green toad Bufo viridis from Northern Greece. Biochemical Systematics and Ecology 23: 39-45.
Katz, U. & Gil, N. (1997). Different temperature relations of two species of toads that coexist at the border of their geographical distributions. Amphibia-Reptilia 18: 259-268.
Landler, L.; Burgstaller, S. & Schweiger, S. (2023). Land-use preferences of the European green toad (Bufotes viridis) in the city of Vienna (Austria): the importance of open land in urban environments. Frontiers in Zoology 20: 3.
Luedtke, J.A.; Chanson, J.; Neam, K.; Hobin, L.; Maciel, A.O.; Catenazzi, A.; Borzée, A.; Hamidy, A.; Aowphol, A.; Jean, A. et al. (2023). Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 622: 308-314.
McMahon, T.A.; Halstead, N.T.; Johnson, S.; Raffel, T.R.; Romansic, J.M.; Crumrine, P.W.; Boughton, R.K.; Martin, L.B. & Rohr, J.R. 82011). The fungicide chlorothalonil is nonlinearly associated with corticosterone levels, immunity, and mortality in amphibians. Environmental Health Perspectives 119: 1098-1103.
Moreira, R.A.; de Araujo, G.S.; Silva, A.R.R.G.; Daam, M.A.; Rocha, O.; Soares, A.M. & Loureiro, S. (2020). Effects of abamectin-based and difenoconazole-based formulations and their mixtures in Daphnia magna: a multiple endpoint approach. Ecotoxicology 29: 1486-1499.
Mu, X.; Pang, S.; Sun, X.; Gao, J.; Chen, J.; Chen, X.; Li, X. & Wang, C. (2013). Evaluation of acute and developmental effects of difenoconazole via multiple stage zebrafish assays. Environmental Pollution 175: 147-157.
Pham, B.; Miranda, A.; Allinson, G. & Nugegoda, D. (2017). Evaluating the non-lethal effects of organophosphorous and carbamate insecticides on the yabby (Cherax destructor) using cholinesterase (AChE, BChE), Glutathione S-Transferase and ATPase as biomarkers. Ecotoxicology and Environmental Safety 143: 283-288.
Quaranta, A.; Bellantuono, V.; Cassano, G. & Lippe, C. (2009). Why amphibians are more sensitive than mammals to xenobiotics. Plos One 4: e7699.
Ravi Kiran, T. & Aruna, H.K. (2010). Antioxidant enzyme activities and markers of oxidative stress in the life cycle of earthworm, Eudrilus eugeniae. Italian Journal of Zoology 77: 144-148.
R Development Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org. Retrieved on 10 December 2022.
Rutkoski, C.F.; Macagnan, N.; Folador, A.; Skovronski, V.J.; do Amaral, A.M.B.; Leitemperger, J.W.; Costa, M.D.; Hartmann, P.A.; Müller, C.; Loro, V.L. & Hartmann, M.T. (2021). Cypermethrin- and fipronil-based insecticides cause biochemical changes in Physalaemus gracilis tadpoles. Environmental Science and Pollution Research 28: 4377-4387.
Sanches, A.L.M.; Vieira, B.H.; Reghini, M.V.; Moreira, R.A.; Freitas, E.C.; Espíndola, E.L.G. & Daam, M.A. (2017). Single and mixture toxicity of abamectin and difenoconazole to adult zebrafish (Danio rerio). Chemosphere 188: 582-587.
Sistani, A.; Burgstaller, S.; Gollmann, G. & Lander, L. (2021). The European green toad, Bufotes viridis, in Donaufeld (Vienna, Austria): status and size of the population. Herpetozoa 34: 259-264.
Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.L.; Fischman, D.L. & Waller, R.W. (2004). Status and trends of amphibian. Science 306: 1783-1786.
Thomson, C. (2019). Metabolic Patterning and Regulation during Early Embryo Development and Appendage Regeneration. Ph.D. Dissertation, The University of Manchester, Manchester, UK.
Toni, C.; Ferreira, D.; Kreutz, L.C.; Loro, V.L. & Barcellos, L.J.G. (2011). Assessment of oxidative stress and metabolic changes in common carp (Cyprinus carpio) acutely exposed to different concentrations of the fungicide tebuconazole. Chemosphere 83: 579-584.
Tripathi, G. & Bandooni, N. (2011). Impact of alphamethrin on antioxidant defense (catalase) and protein profile of a catfish. Environmentalist 31: 54-58.
WHO (2021). WHO Specifications and Evaluations for Public Health Pesticides. World Health Organization, Geneva, Switzerland.
Xu, P. & Huang, L. (2017). Effects of α-cypermethrin enantiomers on the growth, biochemical parameters and bioaccumulation in Rana nigromaculata tadpoles of the anuran amphibians. Ecotoxicology and Environmental Safety 139: 431-438.
Yu, S.; Wages, M.R.; Cai, Q.; Maul, J.D. & Cobb, G.P. (2013). Lethal and sublethal effects of three insecticides on two developmental stages of Xenopus laevis and comparison with other amphibians. Environmental Toxicology and Chemistry 32: 2056-2064.
Žagar, A.; Simčič, T.; Carretero, M.A. & Vrezec, A. (2015). The role of metabolism in understanding the altitudinal segregation pattern of two potentially interacting lizards. Comparative Biochemistry and Physiology A 179: 1-6.
Zhang, W.; Lu, Y.; Huang, L.; Cheng, C.; Di, S.; Chen, L.; Zhou, Z. & Diao, J. (2018). Comparison of triadimefon and its metabolite on acute toxicity and chronic effects during the early development of Rana nigromaculata tadpoles. Ecotoxicology and Environmental Safety 156: 247-254.
Zhao, F.; Liu, K.; Xie, D.; Lv, D. & Luo, J. (2018). A novel and actual mode for study of soil degradation and transportation of difenoconazole in a mango field. Royal Society of Chemistry Advances 8: 8671-8677.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 See B&AH copyright notice
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.