High prevalence of <em>Trypanosoma</em> infection in Iberian green frogs (<em>Pelophylax perezi</em>) and evidence of a negative relationship between blood parasites and two indices of frog body condition

Authors

  • Rodrigo Megía-Palma Universidad de Alcalá (UAH)
  • Gregorio Sánchez-Montes Museo Nacional de Ciencias Naturales (CSIC)
  • Edward Netherlands
  • Gemma Palomar Universidad Complutense de Madrid (UCM)
  • Iñigo Martínez-Solano Museo Nacional de Ciencias Naturales (CSIC)

DOI:

https://doi.org/10.11160/bah.294

Keywords:

microscopic diagnosis, trade-offs, Aegyptianella, amphibian parasite diversity, Lankesterella, Mediterranean wetlands

Abstract

Trypanosoma commonly parasitizes anuran hosts but very few studies have investigated ecological relationships in multiparasitized amphibians. We analysed a sample of 29 adult Iberian green frogs (Pelophylax perezi) from a monitored population in central Spain and found that 28 of these individuals (96.5%) were infected with blood parasites. The protozoa genera Lankesterella (Apicomplexa: Eimeriorina) (72.4%) and Trypanosoma (Euglenozoa: Trypanosomatida) (69%) had the highest prevalence, followed by an intraerythrocytic bacteria of the genus Aegyptianella (Pseudomonadota: Rickettsiales) (31.0%). We also report an infection by hematic microfilariae (Nematoda: Spirurida) (6.8%), which to our knowledge represents the first documented case in Iberian amphibians. Infections with more than one parasite type occurred in 62.1% of the frogs. A multimodel inference approach indicated that the infection intensities of Trypanosoma and Aegyptianella were the most important predictors, both negatively affecting the body condition of the frogs. Furthermore, the number of leeches that frogs had when captured showed a strong positive association with Trypanosoma infection intensity. This suggests that leeches act as primary vectors for Trypanosoma. Our results revealed a high taxonomic diversity of blood parasites in green frogs, thus contributing to expand our knowledge of the biodiversity of Mediterranean wetlands and highlighted the potential negative effects of certain infections on the fitness of these amphibian hosts.

References

Abrahamsohn I.A. & Coffman R.L. (1995). Cytokine and nitric oxide regulation of the immunosuppression in Trypanosoma cruzi infection. Journal of Immunology 155: 3955-3963. DOI: https://doi.org/10.4049/jimmunol.155.8.3955

Băncilă, R.I.; Hartel, T.; Plăiaşu, R.; Smets, J. & Cogălniceanu, D. (2010). Comparing three body condition indices in amphibians: a case study of yellow-bellied toad Bombina variegata. Amphibia-Reptilia 31: 558-562. DOI: https://doi.org/10.1163/017353710X518405

Bardsley, J.E. & Harmsen, R. (1973). The trypanosomes of Anura. Advances in Parasitology 11: 1-73. DOI: https://doi.org/10.1016/S0065-308X(08)60184-0

Barta, J.R.; Boulard, Y. & Desser, S.S. (1989). Blood parasites of Rana esculenta from Corsica: comparison of its parasites with those of eastern North American ranids in the context of host phylogeny. Transactions of the American Microscopical Society 108: 6-20. DOI: https://doi.org/10.2307/3226201

Bartlett-Healy, K.; Crans, W. & Gaugler, R. (2009). Vertebrate hosts and phylogenetic relationships of amphibian trypanosomes from a potential invertebrate vector, Culex territans Walker (Diptera: Culicidae). Journal of Parasitology 95: 381-387. DOI: https://doi.org/10.1645/GE-1793.1

Barton, K. (2024). MuMIn: Multi-Model Inference. R package version 1.40.4. The R Foundation, Vienna, Austria. Available at https://CRAN.R-project.org/package=MuMIn. Retrieved on 20 October 2024.

Bedrick, E.J. & Tsai, C.L. (1994). Model selection for multivariate regression in small samples. Biometrics 50: 226-231. DOI: https://doi.org/10.2307/2533213

Bernal, X.E. & Pinto, C.M. (2016). Sexual differences in prevalence of a new species of trypanosome infecting túngara frogs. International Journal for Parasitology 5: 40-47. DOI: https://doi.org/10.1016/j.ijppaw.2016.01.005

Blanco, G.; De la Puente, J.; Corroto, M.; Baz, A. & Colas, J. (2001). Condition-dependent immune defence in the Magpie: how important is ectoparasitism? Biological Journal of the Linnean Society 72: 279-286. DOI: https://doi.org/10.1111/j.1095-8312.2001.tb01317.x

Bohonak, A.J. (2004). RMA, Software for Reduced Major Axis Regression version 1.17. Available at http://www.bio.sdsu.edu/pub/andy/rma.html. Retrieved on 28 October 2019.

Bordes, F. & Morand, S. (2011). The impact of multiple infections on wild animal hosts: a review. Infection Ecology and Epidemiology 1: 7346. DOI: https://doi.org/10.3402/iee.v1i0.7346

Bower, D.S.; Brannelly, L.A.; McDonald, C.A.; Webb, R.J.; Greenspan, S.E.; Vickers, M.; Gardner, M.C. & Greenlees, M.J. (2019). A review of the role of parasites in the ecology of reptiles and amphibians. Austral Ecology 44: 433-448. DOI: https://doi.org/10.1111/aec.12695

Brun, R.; Blum, J.; Chappuis, F. & Burri, C. (2010). Human African trypanosomiasis. The Lancet 375: 148-159. DOI: https://doi.org/10.1016/S0140-6736(09)60829-1

Burnham, K.P. & Anderson, D.R. (2004). Multimodel inference, understanding AIC and BIC in model selection. Sociological Methods and Research 33: 261-304. DOI: https://doi.org/10.1177/0049124104268644

Cadeddu, G. & Castellano, S. (2012). Factors affecting variation in the reproductive investment of female treefrogs, Hyla intermedia. Zoology 115: 372-378. DOI: https://doi.org/10.1016/j.zool.2012.04.006

Campbell, L.; Bower, D.S.; Clulow, S.; Stockwell, M.; Clulow, J. & Mahony, M. (2019). Interaction between temperature and sublethal infection with the amphibian chytrid fungus impacts a susceptible frog species. Scientific Reports 9: 1-8. DOI: https://doi.org/10.1038/s41598-018-35874-7

Capellà-Marzo, B.; Sánchez-Montes, G. & Martínez-Solano, I. (2020). Contrasting demographic trends and asymmetric migration rates in a spatially structured amphibian population. Integrative Zoology 15: 482-497. DOI: https://doi.org/10.1111/1749-4877.12449

Castellano, S.; Cucco, M. & Giacoma, C. (2004). Reproductive investment of female green toads (Bufo viridis). Copeia 2004: 659-664. DOI: https://doi.org/10.1643/CE-03-182R2

Cattadori, I.M.; Albert, R. & Boag, B. (2007). Variation in host susceptibility and infectiousness generated by co-infection: the myxoma–Trichostrongylus retortaeformis case in wild rabbits. Journal of the Royal Society Interface 4: 831-840. DOI: https://doi.org/10.1098/rsif.2007.1075

Chang, Y.C.; Lin, T.S.; Huang, W.W.; Lee, H.Y.; Shih, C.H.; Wu, Y.C.; Huang, C.C. & Chen, T.H. (2023). Reevaluation of hemoparasites in the black spiny-tailed iguana (Ctenosaura similis) with the first pathological and molecular characterizations of Lankesterella desseri n. sp. and redescription of Hepatozoon gamezi. Microorganisms 11: 2374. DOI: https://doi.org/10.3390/microorganisms11102374

Clay, P.A.; Cortez, M.H.; Duffy, M.A. & Rudolf, V.H. (2019). Priority effects within coinfected hosts can drive unexpected population‐scale patterns of parasite prevalence. Oikos 128: 571-583. DOI: https://doi.org/10.1111/oik.05937

Comas, M.; Ribas, A.; Milazzo, C.; Sperone, E. & Tripepi, S. (2014). High levels of prevalence related to age and body condition: host-parasite interactions in a water frog Pelophylax kl hispanicus. Acta Herpetologica 9: 25-31.

Davies, A.J. & Johnston, M.R.L. (2000). The biology of some intraerythrocytic parasites of fishes, amphibia and reptiles. Advances in Parasitology 45: 1-107 DOI: https://doi.org/10.1016/S0065-308X(00)45003-7

Desprat, J.L.; Lengagne, T.; Dumet, A.; Desouhant, E. & Mondy, N. (2015). Immunocompetence handicap hypothesis in tree frog: trade-off between sexual signals and immunity? Behavioral Ecology 26: 1138-1146. DOI: https://doi.org/10.1093/beheco/arv057

Drechsler, R.M.; Belliure, J. & Megía-Palma, R. (2021). Phenological and intrinsic predictors of mite and haemacoccidian infection dynamics in a Mediterranean community of lizards. Parasitology 148: 1328-1338. DOI: https://doi.org/10.1017/S0031182021000858

Dunlap, K.D. & Mathies, T. (1993). Effects of nymphal ticks and their interaction with malaria on the physiology of male fence lizards. Copeia 1993: 1045-1048. DOI: https://doi.org/10.2307/1447082

Duszynski, D.W.; Bolek, M.G. & Upton, S.J. (2007). Coccidia (Apicomplexa: Eimeriidae) of amphibians of the world. Zootaxa 1667: 1-77. DOI: https://doi.org/10.11646/zootaxa.1667.1.1

Ferreira, J.I.G.S.; Costa, A.P.; Ramirez, D.; Roldan, J.A.M.; Saraiva, D.; Founier, G.F.R.S.; Sue, A.; Zambelli, E.R.; Minervino, A.H.H.; Verdade, V.K.; Gennari, S.M. & Marcili, A. (2015). Anuran trypanosomes: phylogenetic evidence for new clades in Brazil. Systematic Parasitology 91: 63-70. DOI: https://doi.org/10.1007/s11230-015-9558-z

Ferreira, R.C.; De Souza, A.A.; Freitas, R.A.; Campaner, M.; Takata, C.S.; Barrett, T.V.; Shaw, J.J. & Teixeira, M.M. (2008). A phylogenetic lineage of closely related trypanosomes (Trypanosomatidae: Kinetoplastida) of anurans and sand flies (Psychodidae: Diptera) sharing the same ecotopes in Brazilian Amazonia. Journal of Eukaryotic Microbiology 55: 427-435. DOI: https://doi.org/10.1111/j.1550-7408.2008.00342.x

Fox, J. & Weisberg, S. (2019). An R Companion to Applied Regression, Third Edition. Thousand Oaks, California, USA.

Galuppi, R.; Scaravelli, D.; Zaccaroni, A.; Caffara, M.; Riccardi, E. & Tampieri, M.P. (2012). Survey of parasite fauna in Rana kl. esculenta in Ravenna province: preliminary results, In G. Cringoli (ed.) Mappe Parassitologiche XXVII Congresso Nazionale Società Italiana di Parassitologia, Naples, Italy, p. 184.

Girish, S. & Saidapur, S.K. (2000). Interrelationship between food availability, fat body, and ovarian cycles in the frog, Rana tigrina, with a discussion on the role of fat body in anuran reproduction. Journal of Experimental Zoology A 286: 487-493. DOI: https://doi.org/10.1002/(SICI)1097-010X(20000401)286:5<487::AID-JEZ6>3.0.CO;2-Z

Goodwin, L.G.; Green, D.G.; Guy, M.W. & Voller, A. (1972). Immunosuppression during trypanosomiasis. British Journal of Experimental Pathology 53: 40.

Gupta, N.; Gupta, D.K. & Gangwar, R. (2020). Icosiella (Filarioidea) microfilariae from the blood of amphibian hosts: transmission experiments in fish models to detect host specificity. Biharean Biologist 14: 80-84.

Hamilton, W.D. & Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites? Science 218: 384-387. DOI: https://doi.org/10.1126/science.7123238

Harris, D.J.; Spigonardi, M.P.; Maia, J.P. & Cunha, R.T. (2013). Molecular survey of parasites in introduced Pelophylax perezi (Ranidae) water frogs in the Azores. Acta Parasitologica 58: 607-611. DOI: https://doi.org/10.2478/s11686-013-0176-0

Hausfater, G.; Gerhardt, H.C. & Klump, G.M. (1990). Parasites and mate choice in gray treefrogs, Hyla versicolor. American Zoologist 30: 299-312. DOI: https://doi.org/10.1093/icb/30.2.299

Hegyi, G. & Garamszegi, L.Z. (2011). Using information theory as a substitute for stepwise regression in ecology and behavior. Behavioral Ecology and Sociobiology 65: 69-76. DOI: https://doi.org/10.1007/s00265-010-1036-7

Herczeg, D.; Vörös, J.; Végvári, Z.; Kuzmin, Y. & Brooks, D.R. (2016). Helminth parasites of the Pelophylax esculentus complex (Anura: Ranidae) in Hortobágy National Park (Hungary). Comparative Parasitology 83: 36-48. DOI: https://doi.org/10.1654/1525-2647-83.1.36

Herczeg, D.; Ujszegi, J.; Kásler, A.; Holly, D. & Hettyey, A. (2021). Host–multiparasite interactions in amphibians: a review. Parasites and Vectors 14: 296. DOI: https://doi.org/10.1186/s13071-021-04796-1

Hernandez-Caballero, I.; Garcia-Longoria, L.; Gomez-Mestre, I. & Marzal, A. (2022). The adaptive host manipulation hypothesis: parasites modify the behaviour, morphology, and physiology of amphibians. Diversity 14: 739. DOI: https://doi.org/10.3390/d14090739

Hoverman, J.T.; Hoye, B.J. & Johnson, P.T. (2013). Does timing matter? How priority effects influence the outcome of parasite interactions within hosts. Oecologia 173: 1471-1480. DOI: https://doi.org/10.1007/s00442-013-2692-x

Howard, R.D. (1978). The influence of male‐defended oviposition sites on early embryo mortality in bullfrogs. Ecology 59: 789-798. DOI: https://doi.org/10.2307/1938783

Jiménez-Sánchez, M.S. (1998). Contribución al Conocimiento de la Parasitofauna de Rana perezi Seoane, 1885 (Amphibia: Ranidae) de la Provincia de Ávila. Ph.D. Dissertation, Universidad Complutense de Madrid, Madrid, Spain.

Johnson, P.T. & Hoverman, J.T. (2012). Parasite diversity and coinfection determine pathogen infection success and host fitness. Proceedings of the National Academy of Sciences 109: 9006-9011. DOI: https://doi.org/10.1073/pnas.1201790109

Klump, G.M. & Gerhardt, H.C. (1987). Use of non-arbitrary acoustic criteria in mate choice by female gray tree frogs. Nature 326: 286-288. DOI: https://doi.org/10.1038/326286a0

Komsta, L. & Novomestky, F. (2022). moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14. The R Foundation, Vienna, Austria. Available at https://CRAN.R-project.org/package=moments. Retrieved on 20 October 2024.

Kotob, M.H.; Menanteau-Ledouble, S.; Kumar, G.; Abdelzaher, M. & El-Matbouli, M. (2017). The impact of co-infections on fish: a review. Veterinary Research 47: 1-12. DOI: https://doi.org/10.1186/s13567-016-0383-4

Leal, D.D.M.; Dreyer, C.S.; da Silva, R.J.; Ribolla, P.E.M.; dos Santos Paduan, K.; Bianchi, I. & O’Dwyer, L.H. (2015). Characterization of Hepatozoon spp. in Leptodactylus chaquensis and Leptodactylus podicipinus from two regions of the Pantanal, state of Mato Grosso do Sul, Brazil. Parasitology Research 114: 1541-1550. DOI: https://doi.org/10.1007/s00436-015-4338-x

Lesbarrères, D.; Balseiro, A.; Brunner, J.; Chinchar, V.G.; Duffus, A.; Kerby, J.; Miller, D.L.; Robert, J.; Schock, D.M.; Waltzek, T. & Gray, M.J. (2012). Ranavirus: past, present and future. Biology Letters 8: 481-483. DOI: https://doi.org/10.1098/rsbl.2011.0951

Li, J. (2012). Multivariate Generalization of Reduced Major Axis Regression. Ph.D. Dissertation, Arizona State University, Phoenix, Arizona, USA.

Mabbott, N.A. (2018). The influence of parasite infections on host immunity to co-infection with other pathogens. Frontiers in Immunology 9: 2579. DOI: https://doi.org/10.3389/fimmu.2018.02579

MacCracken, J.G. & Stebbings, J.L. (2012). Test of a body condition index with amphibians. Journal of Herpetology 46: 346-350. DOI: https://doi.org/10.1670/10-292

Martínez, J.; Merino, S.; Badás, E.P.; Almazán, L.; Moksnes, A. & Barbosa, A. (2018). Hemoparasites and immunological parameters in Snow Bunting (Plectrophenax nivalis) nestlings. Polar Biology 41: 1855-1866. DOI: https://doi.org/10.1007/s00300-018-2327-0

McCallum, M.L. & Trauth, S.E. (2007). Physiological trade-offs between immunity and reproduction in the northern cricket frog (Acris crepitans). Herpetologica 63: 269-274. DOI: https://doi.org/10.1655/0018-0831(2007)63[269:PTBIAR]2.0.CO;2

Megía-Palma, R.; Martínez, J. & Merino, S. (2014). Molecular characterization of haemococcidia genus Schellackia (Apicomplexa) reveals the polyphyletic origin of the family Lankesterellidae. Zoologica Scripta 43: 304-312. DOI: https://doi.org/10.1111/zsc.12050

Megía-Palma, R.; Martínez, J.; Paranjpe, D.; D’Amico, V.; Aguilar, R.; Palacios, M.G.; Cooper, R.; Ferri-Yáñez, F.; Sinervo, B. & Merino, S. (2017). Phylogenetic analyses reveal that Schellackia parasites (Apicomplexa) detected in American lizards are closely related to the genus Lankesterella: is the range of Schellackia restricted to the Old World? Parasites and Vectors 10: 470. DOI: https://doi.org/10.1186/s13071-017-2405-0

Megía-Palma, R.; Paranjpe, D.; Blaimont, P.; Cooper, R. & Sinervo, B. (2020a). To cool or not to cool? Intestinal coccidians disrupt the behavioral hypothermia of lizards in response to tick infestation. Ticks and Tick-Borne Diseases 11: 101275. DOI: https://doi.org/10.1016/j.ttbdis.2019.101275

Megía-Palma, R.; Arregui, L.; Pozo, I.; Žagar, A.; Serén, N.; Carretero, M.A. & Merino, S. (2020b). Geographic patterns of stress in insular lizards reveal anthropogenic and climatic signatures. Science of the Total Environment 749: 141655. DOI: https://doi.org/10.1016/j.scitotenv.2020.141655

Megía-Palma, R.; Merino, S. & Barrientos, R. (2022). Longitudinal effects of habitat quality, body condition, and parasites on colour patches of a multiornamented lizard. Behavioral Ecology and Sociobiology 76: 73. DOI: https://doi.org/10.1007/s00265-022-03182-w

Megía-Palma, R.; Paranjpe, D.; Cooper, R.D.; Blaimont, P. & Sinervo, B. (2024). Natural parasites in conjunction with behavioral and color traits explain male agonistic behaviors in a lizard. Current Zoology 70: 59-69. DOI: https://doi.org/10.1093/cz/zoac095

Merino, S.; Potti, J. & Moreno, J. (1996). Maternal effort mediates the prevalence of trypanosomes in the offspring of a passerine bird. Proceedings of the National Academy of Sciences 93: 5726-5730. DOI: https://doi.org/10.1073/pnas.93.12.5726

Mikulíček, P.; Mešková, M.; Cyprich, M.; Jablonski, D.; Papežík, P.; Hamidi, D.; Pekşen, C.A.; Vörös, J.; Herczeg, D. & Benovics, M. (2021). Weak population‐genetic structure of a widely distributed nematode parasite of frogs in the western Palearctic. Journal of Zoological Systematics and Evolutionary Research 59: 1689-1702. DOI: https://doi.org/10.1111/jzs.12575

Møller, A.P.; Christe, P.; Erritzøe, J. & Mavarez, J. (1998). Condition, disease and immune defence. Oikos 83: 301-306. DOI: https://doi.org/10.2307/3546841

Navarro, P. & Lluch, J. (2006). Helminth communities of two green frogs (Rana perezi and Rana saharica) from both shores of the Alboran Sea. Parasite 13: 291-297. DOI: https://doi.org/10.1051/parasite/2006134291

Netherlands, E.C.; Cook, C.A.; Kruger, D.J.; du Preez, L.H. & Smit, N.J. (2015). Biodiversity of frog haemoparasites from sub-tropical northern KwaZulu-Natal, South Africa. International Journal for Parasitology: Parasites and Wildlife 4: 135-141. DOI: https://doi.org/10.1016/j.ijppaw.2015.01.003

Netherlands, E.C.; Cook, C.A.; Du Preez, L.H.; Vanhove, M.P.; Brendonck, L. & Smit, N.J. (2018). Monophyly of the species of Hepatozoon (Adeleorina: Hepatozoidae) parasitizing (African) anurans, with the description of three new species from hyperoliid frogs in South Africa. Parasitology 145: 1039-1050. DOI: https://doi.org/10.1017/S003118201700213X

Netherlands, E.C.; Svitin, R.; Cook, C.A.; Smit, N.J.; Brendonck, L.; Vanhove, M.P. & du Preez, L.H. (2020). Neofoleyellides boerewors n. gen. n. sp.(Nematoda: Onchocercidae) parasitising common toads and mosquito vectors: morphology, life history, experimental transmission and host-vector interaction in situ. International Journal for Parasitology 50: 177-194. DOI: https://doi.org/10.1016/j.ijpara.2019.11.009

O’Donoghue, P. (2017). Haemoprotozoa: making biological sense of molecular phylogenies. International Journal for Parasitology 6: 241-256. DOI: https://doi.org/10.1016/j.ijppaw.2017.08.007

Parejo-Pulido, D.; Mora-Rubio, C.; Marzal, A. & Magallanes, S. (2023). Molecular characterization of haemosporidian and haemogregarine diversity in southwestern Iberian amphibians and reptiles. Parasitology Research 122: 1139-1149. DOI: https://doi.org/10.1007/s00436-023-07814-6

Paterson, J.E. & Blouin‐Demers, G. (2020). High tolerance of two parasites in ornate tree lizards reduces the fitness costs of parasitism. Journal of Zoology 312: 102-110. DOI: https://doi.org/10.1111/jzo.12795

Patón, D.; Juarranz, A.; Sequeros, E.; Pérez-Campo, R.; López-Torres, M. & De Quiroga, G.B. (1991). Seasonal age and sex structure of Rana perezi assessed by skeletochronology. Journal of Herpetology 25: 389-394. DOI: https://doi.org/10.2307/1564759

Pavľáková, B.; Pipová, N.; Balogová, M.; Majláth, I.; Mikulíček, P. & Majláthová, V. (2024). Blood parasites of water frogs (Pelophylax esculentus complex) from the Danube Delta, Romania. Parasitology International 102: 102920. DOI: https://doi.org/10.1016/j.parint.2024.102920

Peig, J. & Green, A.J. (2009). New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118: 1883-1891. DOI: https://doi.org/10.1111/j.1600-0706.2009.17643.x

Peig, J. & Green, A.J. (2010). The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Functional Ecology 24: 1323-1332. DOI: https://doi.org/10.1111/j.1365-2435.2010.01751.x

Plénet, S.; Richardson, C.; Joly, P.; Lengagne, T. & Léna, J.P. (2010). The challenge of finding a high-quality male: a treefrog solution based on female assessment of male calls. Behaviour 147: 1737-1752. DOI: https://doi.org/10.1163/000579510X530221

Potti, J. & Merino, S. (1996). Decreased levels of blood trypanosome infection correlate with female expression of a male secondary sexual trait: implications for sexual selection. Proceedings of the Biological Society of Washington 263: 1199-1204. DOI: https://doi.org/10.1098/rspb.1996.0176

Pröhl, H.; Eulenburg, J.; Meuche, I. & Bolaños, F. (2013). Parasite infection has little effect on sexual signals and reproductive behaviour in strawberry poison frogs. Evolutionary Ecology 27: 675-692. DOI: https://doi.org/10.1007/s10682-013-9634-2

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/. Retrieved on 10 February 2022 .

Rahman, W.A. & Shakinah, Z. (2015). Influence of some environmental parameters on some frog populations and their parasitc fauna. Veterinary Science and Technology 6: 227. DOI: https://doi.org/10.4172/2157-7579.1000227

Rassi, A. & de Rezende, J.M. (2012). American trypanosomiasis (Chagas disease). Infectious Disease Clinics of North America 26: 275-291. DOI: https://doi.org/10.1016/j.idc.2012.03.002

Reichenbach-Klinke, H. & Elkan, E. (1965). The Principal Diseases of Lower Vertebrates. Book II Diseases of Amphibians. Academic Press Inc, London, UK.

Rollings, N.; Uhrig, E.J.; Krohmer, R.W.; Waye, H.L.; Mason, R.T.; Olsson, M.; Whittington, C.M. & Friesen, C.R. (2017). Age-related sex differences in body condition and telomere dynamics of red-sided garter snakes. Proceedings of the Biological Society of Washington 284: 2016-2146. DOI: https://doi.org/10.1098/rspb.2016.2146

Rollins-Smith, L.A. (2017). Amphibian immunity–stress, disease, and climate change. Developmental and Comparative Immunology 66: 111-119. DOI: https://doi.org/10.1016/j.dci.2016.07.002

Roy, B.A. & Kirchner, J.W. (2000). Evolutionary dynamics of pathogen resistance and tolerance. Evolution 54: 51-63. DOI: https://doi.org/10.1111/j.0014-3820.2000.tb00007.x

Saidapur, S.K. & Hoque, B. (1996). Long-term effects of ovariectomy on abdominal fat body and body masses in the frog Rana tigrina during the recrudescent phase. Journal of Herpetology 30: 70-73. DOI: https://doi.org/10.2307/1564709

Sailasuta, A.; Satetasit, J. & Chutmongkonkul, M. (2011). Pathological study of blood parasites in rice field frogs, Hoplobatrachus rugulosus (Wiegmann, 1834). Veterinary Medicine International 2011: 850568. DOI: https://doi.org/10.4061/2011/850568

Salvador, A. & García-París, M. (2001). Anfibios Españoles. Identificación, Historia Natural y Distribución. Canseco Editores, Talavera de la Reina, Spain.

Sánchez, C.A.; Becker, D.J.; Teitelbaum, C.S.; Barriga, P.; Brown, L.M.; Majewska, A.A.; Hall, R.J. & Altizer, S. (2018). On the relationship between body condition and parasite infection in wildlife: a review and meta‐analysis. Ecology Letters 21: 1869-1884. DOI: https://doi.org/10.1111/ele.13160

Sanders, E.P. (1928). Observations and experiments on the haemogregarines of certain amphibia. Journal of Parasitology 14: 188-192. DOI: https://doi.org/10.2307/3271999

Scheele, B.C.; Pasmans, F.; Skerratt, L.F.; Martel, A.; Beukema, W.; Acevedo, A.A.; Burrowes, P.A.; Carvalho, T.; Catenazzi, A.; De la Riva, I.; Fisher, M.C.; Flechas, S.V.; Foster, C.N.; Frías-Álvarez, P.; Garner, T.W.J.; Gratwicke, B.; Guayasamin, J.M.; Hirschfeld, M.; Kolby, J.E.; Kosch, T.A.; La Marca, E.; Lindenmayer, D.B.; Lips, K.R.; Longo, A.V.; Maneyro, R.; McDonald, C.A.; Mendelson III, J.; Palacios-Rodriguez, P.; Parra-Olea, G.; Richards-Zawacki, C.L.; Rödel, M.-O.; Rovito, S.M.; Soto-Azat, C.; Toledo, L.F.; Voyles, J.; Weldon, C.; Whitfield, S.M.; Wilkinson, M.; Zamudio, K. & Canessa, S. (2019). Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363: 1459-1463. DOI: https://doi.org/10.1126/science.aav0379

Soler, J.J.; Neve, L.D.; Pérez-Contreras, T.; Soler, M. & Sorci, G. (2003). Trade-off between immunocompetence and growth in magpies: an experimental study. Proceedings of the Royal Society B Biological Sciences 270: 241-248. DOI: https://doi.org/10.1098/rspb.2002.2217

Spodareva, V.V.; Grybchuk-Ieremenko, A.; Losev, A.; Votýpka, J.; Lukeš, J.; Yurchenko, V. & Kostygov, A.Y. (2018). Diversity and evolution of anuran trypanosomes: insights from the study of European species. Parasites and Vectors 11: 447. DOI: https://doi.org/10.1186/s13071-018-3023-1

Swallow, B.M. (2000). Impacts of Trypanosomiasis on African Agriculture, Volume 2. Food and Agriculture Organization of the United Nations, Rome, Italy.

Tomé, B.; Pereira, A.; Jorge, F.; Carretero, M.A.; Harris, D.J. & Perera, A. (2018). Along for the ride or missing it altogether: exploring the host specificity and diversity of haemogregarines in the Canary Islands. Parasites and Vectors 11: 190. DOI: https://doi.org/10.1186/s13071-018-2760-5

Václav, R.; Prokop, P. & Fekiač, V. (2007). Expression of breeding coloration in European green lizards (Lacerta viridis): variation with morphology and tick infestation. Canadian Journal of Zoology 85: 1199-1206. DOI: https://doi.org/10.1139/Z07-102

Venesky, M.D.; Wilcoxen, T.E.; Rensel, M.A.; Rollins-Smith, L.; Kerby, J.L. & Parris, M.J. (2012). Dietary protein restriction impairs growth, immunity, and disease resistance in southern leopard frog tadpoles. Oecologia 169: 23-31. DOI: https://doi.org/10.1007/s00442-011-2171-1

Venkatachalam, A.K.S.B.; Čepička, I.; Hrazdilová, K. & Svobodová, M. (2023). Host specificity of passerine Lankesterella (Apicomplexa: Coccidia). European Journal of Protistology 90: 126007. DOI: https://doi.org/10.1016/j.ejop.2023.126007

Walton, A.C. (1949). Parasites of the Ranidae (Amphibia). VII. Transactions of the American Microscopical Society 68: 49-54. DOI: https://doi.org/10.2307/3223205

Witenberg, G. & Gerichter, C. (1944). The morphology and life history of Foleyella duboisi with remarks on allied filariids of Amphibia. Journal of Parasitology 30: 245-256. DOI: https://doi.org/10.2307/3272645

Ziegler, L.; Arim, M. & Bozinovic, F. (2016). Intraspecific scaling in frog calls: the interplay of temperature, body size and metabolic condition. Oecologia 181: 673-681. DOI: https://doi.org/10.1007/s00442-015-3499-8

Downloads

Published

2024-12-24

Issue

Section

Research Papers