Chemical discrimination of pesticide-treated grapes by lizards (<em>Gallotia galloti palmae</em>, Fam. Lacertidae)


  • Nieves Rosa Yanes-Marichal
  • Angel Fermín Francisco-Sánchez
  • Miguel Molina-Borja Grupo Etología y Ecología del Comportamiento, Departamento de Biología Animal, Facultad de Biología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Canary Islands, Spain;



chemical detection, Gallotia, grapes, lizards, pesticide


Lizards from the Canary Islands may act as pests of several cultivated plants. As a case in point, vineyard farmers often complain about the lizards’ impact on grapes. Though no specific pesticide is used for lizards, several pesticides are used in vineyards to control for insects, fungi, etc. We therefore tested whether lizards (Gallotia galloti palmae) could detect and discriminate pesticide-treated from untreated grapes. To answer this question, we performed experiments with adults of both sexes obtained from three localities in La Palma Island. Two of them were a vineyard and a banana plantation that had been treated with pesticides and the other one was in a natural (untreated) site. In the laboratory, lizards were offered simultaneously one untreated (water sprayed) and one treated (with Folithion 50 LE, diluted to 0.1%) grape placed on small plates. The behaviour of the lizards towards the fruits was filmed and subsequently quantified by means of their tongue-flick, licks or bite rates to each of the grapes. Results showed that only lizards from the natural (untreated) site clearly differentiated the two types of grapes, performing significantly more tongue-flicks, licks and bites to the untreated than to the pesticide-treated grapes. Lizards captured at the other two sites (cultivated fields with pesticide treatment), did not show a significantly different response to the two types of grapes. These results suggest that lizards living in or near cultivated fields may be habituated to pesticide-treated food and, therefore, do not clearly discriminate treated from untreated food items. However, another possibility is that natural selection (or maybe resistance) could be responsible by these individuals in the populations showing this kind of pesticide insensitiveness






Research Papers